

APP NOTE

Time in Embedded

Analytics Systems

AN1001 v1.1

Tessent Embedded Analytics

23 August 2024

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 2

Unpublished work. © 2024 Siemens

This material contains trade secrets or otherwise confidential information owned by Siemens Industry Software, Inc., its

subsidiaries or its affiliates (collectively, "Siemens"), or its licensors. Access to and use of this information is strictly

limited as set forth in Customer's applicable agreement with Siemens. This material may not be copied, distributed, or

otherwise disclosed outside of Customer's facilities without the express written permission of Siemens, and may not be

used in any way not expressly authorized by Siemens.

This document is for information and instruction purposes. Siemens reserves the right to make changes in specifications

and other information contained in this publication without prior notice, and the reader should, in all cases, consult

Siemens to determine whether any changes have been made. Siemens disclaims all warranties with respect to this

document including, without limitation, the implied warranties of merchantability, fitness for a particular purpose, and non-

infringement of intellectual property.

The terms and conditions governing the sale and licensing of Siemens products are set forth in written agreements

between Siemens and its customers. Siemens' End User License Agreement may be viewed at:

www.plm.automation.siemens.com/global/en/legal/online-terms/index.html.

No representation or other affirmation of fact contained in this publication shall be deemed to be a warranty or give rise to

any liability of Siemens whatsoever.

TRADEMARKS: The trademarks, logos, and service marks ("Marks") used herein are the property of Siemens or other

parties. No one is permitted to use these Marks without the prior written consent of Siemens or the owner of the Marks,

as applicable. The use herein of third party Marks is not an attempt to indicate Siemens as a source of a product, but is

intended to indicate a product from, or associated with, a particular third party. A list of Siemens' trademarks may be

viewed at: www.plm.automation.siemens.com/global/en/legal/trademarks.html. The registered trademark Linux® is used

pursuant to a sublicense from LMI, the exclusive licensee of Linus Torvalds, owner of the mark on a world-wide basis.

Support Center: support.sw.siemens.com

Send Feedback on Documentation: support.sw.siemens.com/doc_feedback_form

https://www.plm.automation.siemens.com/global/en/legal/online-terms/index.html
https://www.plm.automation.siemens.com/global/en/legal/trademarks.html
https://support.sw.siemens.com/
https://support.sw.siemens.com/doc_feedback_form

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 3

Contents

Summary ... 5

Overview .. 6

Message Engine time messages ... 6

Analytic module time tags .. 6

Triggering a reset event ... 7

Creating software timestamps .. 8

Periodic and overflow time messages ... 8

Out of order timestamps ... 9

Delayed messages ... 12

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 4

Revision history

Revision Details

v1.1 Initial release

Related documents

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 5

Summary

Tessent Embedded Analytics modules can report the time a downstream message is

created and the time this message arrives at the time-enabled Message Engine. Software

can use these values to create a software timestamp for the message which can be used

to reconstruct activity within the Embedded Analytics subsystem.

This application note is intended for Embedded Software Engineers who want to reconstruct time using

the Embedded Analytic timestamps embedded in downstream messages.

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 6

Overview

Message Engine time messages

Message Engines have a free running 32-bit counter that is based on the Embedded Analytics clock

whose frequency determines the available time resolution in the analytics subsystem. As each

subsystem can have many Message Engines, the time counter should be enabled in one as a

reference for the whole system, typically the one at the bottom of the hierarchy.

The time-enabled Message Engine reports its 32-bit counter value in downstream time messages,

which can be triggered for one of three reasons (which is reported in the time message):

• Periodic – sent when the Interval Timer reaches the user-defined timer_interval cycles. Periodic

time messages are only output if the Interval Timer is enabled in the time-enabled Message

Engine.

• Overflow – the time-enabled Message Engine keeps track of downstream messages from its

lower ports and if it hasn’t seen a downstream message from a port for half an epoch (0x8000

clock cycles) when it receives a new downstream message with a time tag, it sends out an

overflow time message immediately before dispatching the new message over the lower port to a

communicator.

• Reset – sent when the time-enabled Message Engine time counter is reset (by software or a

hardware generated real-time event). The time reported in the output time message is the value

of the counter immediately before it is reset.

The value reported in the time message is the absolute time in EA clock cycles from the previous time

reset event.

Regardless of what triggered it, the Message Engine always generates three time messages with the

same payload but on different flows (0, 1, 2), to make sure that each communicator into which at least

one flow is routed will always get the time message. If more than one flow is routed to a communicator,

it will receive the time message for each flow.

Analytic module time tags

Analytic modules have their own 16-bit counters that are also clocked in the Embedded Analytics

domain. These counter values (which are independent of the time-enabled Message Engine 32-bit

counter and the counters in other modules) can be included as time tags when a downstream message

is created. For example, to include time tags in te_inst downstream messages from the Enhanced

Trace Encoder the timestamp field in the set_trace message needs to be set. The time period taken

for the 16-bit counter to wrap is known as an epoch.

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 7

Triggering a reset event

All 32-bit Message Engine counters and 16-bit module counters can be reset at the same time by

sending an Embedded Analytics real-time reset event (0x1).

The 16-bit time counter associated with each module can also get out of sync when system time is

reset using real-time event 0x1 as event propagation can take time, particularly in large hierarchical

systems. To minimize unnecessary complications, the reset real-time event 0x1 should always be

triggered by the time-enabled Message Engine; triggering the event from another module may cause

additional overhead that is more difficult to quantify.

All counters start at 0 at a hardware reset and there is no internal support for a real-time clock.

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 8

Creating software timestamps
Software can use a combination of the upper bits of a 32-bit time message and the module’s 16-bit time

tag to construct a 32-bit timestamp to indicate when a downstream message is output from the

Message Engine lower port. Although there may be minor delays between when a downstream

message is created and when the Message Engine receives it due to internal latencies, the

concatenated timestamp can be used to provide an understanding of activity within a system.

Periodic and overflow time messages

In Figure 1 a periodic time message with value 0x1000_000 is output followed by a burst of

downstream messages that have been dispatched immediately after each was created. The time tag in

the first message is less than 0x8000 cycles (half an epoch) and each subsequent message follows

less than half an epoch between each other.

Figure 1: Software timestamps based on periodic messages

• As the first downstream message arrives less than 0x8000 cycles after the periodic time

message, software can replace bits [15:0] with the 16-bit time tag from the downstream message

(0x705F) to create the message timestamp 0x1000_705F.

• The second downstream message arrives less than 0x8000 cycles after the first, so the time is

still in the original epoch. Software can create a timestamp from the original periodic time

message and the downstream message time tag (0xDF8A) to create a timestamp 0x1000_DF8A.

• By the time the third message (0x4FC3) arrives, software detects that time tag has rolled over,

increments the value of the upper bits of the periodic time message to 0x1001_xxxx and then

replaces bits [15:0] with the time tag to create a timestamp 0x1001_4FC3.

• As additional messages in the burst arrive at the Message Engine, software can increment the

value of the periodic time message bits [31:16] and calculate timestamps correctly providing the

delta between each time tag is less than 0x8000.

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 9

Note that the burst of messages can come from one or more modules. The Message Engine is only

interested in whether the message has a time tag and its destination.

In Figure 2 the initial burst of messages has finished and a new message with time tag 0x31FD arrives

at the Message Engine.

Figure 2: Software timestamps based on overflow messages

• As the Message Engine has not seen a downstream message with a time tag destined for the

same lower port for more than half an epoch (0x8000 cycles),

o it triggers an overflow time message that contains the number of cycles since the interval

timer last rolled over (0x1D6F_4F2A);

o forwards the downstream message immediately to the lower port after the overflow time

message has been output;

o software can then use the overflow time message and time tag to create the timestamp

0x1D6F_31FD.

• Software can create timestamps for further downstream messages using the periodic time value

providing they appear no more than 0x8000 cycles after the 0x31FD message – see Figure 1.

Out of order timestamps

While messages with time tags often appear in bursts, they can be out of order. Different types of

messages from the same analytic module (for example, match or counter messages from a Bus

Monitor) are independently buffered and so have different latencies between creation and dispatch.

Messages of the same type but from different modules may be out of order because of differences in

buffer depth or fullness resulting in differing latencies between creation and dispatch.

The following pseudo-code shows how to reconstruct message time from a software-maintained 64-bit

time and the message 16-bit time tag. The code assumes that the time that elapsed between creating

the time tag and the arrival of the downstream message at the Message Engine is not long, and that

time counters in all modules are in sync (there is no need for time counter difference compensation).

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 10

1. Startup actions for time application.

o Define real time as a global 64-bit time time64.

o Enable the Interval Timer and set period=0x80000000.

o Capture real-time at the same time as the system is reset.

2. Receive the time tagged message.

o Update time64 with the 32-bit value from the Message Engine. If this is a reset event message

the current time can be set to 0; if it’s a periodic or overflow message the 32-bit timer wrap must

be accounted for:

update_time64(time32_new, reason):

if reason == time_reset:

 time64 = 0

else:

 if time32_new < time64[31:0]:

 time64[63:32] += 1

time64[31:0] = time32_new

3. Reconstruct the message time.

timestamp16_to_time64(timestamp16):

 result64 = time64

 # Determine distance from ``time64[15:0]`` to ``timestamp16``

 time16 = time64[15:0]

 delta16 = (timestamp16 >= time16 ? 0 : 0x10000) + timestamp16 - time16;

The message timestamp may have been captured before or after time64 as maintained by the time
application. If it was captured later, the overflow mechanism makes sure that delta16 is smaller

than 0x8000 (a time message would have been sent in the meantime) by treating it as being

between -0x7FFF and 0x0000.

timestamp_earlier = delta16 > 0x8000

if timestamp_earlier:

 # If timestamp is earlier and timestamp is larger number

 # 16-bit wrap occurred: decrement result64[63:16]

 if timestamp16 > time16: result64[63:16] -= 1

else:

 # If timestamp is later and timestamp is smaller number

 # 16-bit wrap occurred: increment result64[63:16]

 if timestamp16 < time16: result64[63:16] += 1

Replace the lowest 16 bits of the result with the received timestamp

result64[15:0] = timestamp16

If the result indicated later time than current time64, update time64

if result64 > time64: time64 = result64

return result64

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 11

Table 1 and Figure 3 show a set of output values calculated using this time reconstruction algorithm:

 time64
timestamp16

(incoming)

time16
(calculated)

delta16
(calculated)

timestamp
earlier?

wrap? result64
update
time64?

new time64

1 0x0002D000 0xF000 0xD000 0x2000 No 0 0x0002F000 yes 0x0002F000

2 0x0002F000 0x1000 0xF000 0x2000 No 1 0x00031000 yes 0x00031000

3 0x00031000 0xE000 0x1000 0xD000 Yes -1 0x0002E000 no 0x00031000

4 0x00031000 0x0000 0x1000 0xF000 Yes 0 0x00030000 no 0x00031000

5 0x00031000 0xFF00 0x1000 0xEF00 Yes -1 0x0002FF00 no 0x00031000

6 0x00031000 0x3000 0x1000 0x2000 No 0 0x00033000 yes 0x00033000

7 0x00033000 0x5000 0x3000 0x2000 No 0 0x00035000 yes 0x00035000

8 0x00035000 0x7000 0x5000 0x2000 No 0 0x00037000 yes 0x00037000

9 0x00037000 0x8000 0x7000 0x1000 No 0 0x00038000 yes 0x00038000

10 0x00038000 0x6500 0x8000 0xE500 Yes 0 0x00036500 no 0x00038000

11 0x00038000 0xFF00 0x8000 0x7F00 No 0 0x0003FF00 yes 0x0003FF00

12 0x0003FF00 0xFF00 0xFF00 0x0000 No 0 0x0003FF00 no 0x0003FF00

Table 1: Reconstructed 64-bit time from system time and message timestamps

Figure 3: Reconstructed 64-bit time from out-of-order timestamps

 ime not to scale

 32 it counter cloc ed

 de ug cloc

 31 16 1

 onl showing it 31 for simplicit

 message from reset

 timer interval 1

 downstream message

timestamp populated

module 16 it counter

 message

 time efore 1 event

 imestamped message dispatched

immediatel

 n this e ample the arrival times of

consecutive timestamps are less than

 c cles

Time in Embedded Analytics Systems

23 August 2024 AN1001 v1.1 12

Delayed messages

If there are more than 215 cycles between when a message is created and when it arrives at the

Message Engine, the message may appear from the wrong epoch. This uncommon behaviour can be

found with messages that use features like the trace to mode with a filter - if the filter matching condition

is very occasional, a message may not be dispatched for hours or days after the message has been

created. It may also be evident if there is extreme backpressure in the subsystem limiting the rate at

which messages can flow to the Message Engine. In this case the software lacks the information

(number of times the overflow time messages have wrapped) necessary to identify when the message

arrived at the lower port in order to create an accurate timestamp.

Contact Tessent Embedded Analytics for further information if this arises.

	Revision history
	Related documents
	Summary
	Overview
	Message Engine time messages
	Analytic module time tags
	Triggering a reset event

	Creating software timestamps
	Periodic and overflow time messages
	Out of order timestamps
	Delayed messages

