Effective downsampling techniques for SEM
defect inspection using design insights In
machine learning . -
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Introduction to wafer defect down sampling flow
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*  Fast, full wafer inspection; +  Slow, image taken on selected
*  Optical image pixel size locations;
~10x nm * SEM image pixel size ~1x nm
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Methodology
-- Defect down sample with design and process information

« Design systematics in wafer manufacturing:
Design systematics are often seen in R&D stage of new tech node development
Process and design systematics can happen during yield ramp up even HVM, especially on wafer edge dies

« Defect down sampling in Calibre Wafer Defect Management (GUI based):
Layout pattern based: perform pattern-based defect grouping, sample as many pattern variety as possible

Machine learning based (integrating Calibre SONR): with features not limited to layout geometry, but various
design/process/defect signal features, sample based on selected feature group similarity

|Layout pattern based groupingl

Repeatability Analysis
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Machine learning methods in Calibre SONR
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Calibre SONR feature engineering

« Feature Engineering is one of the most critical tasks in
success with ML applications.
* Internal SONR features include layout and process information
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Experiments and Results

* Process Window Qualification

B Fail/Defective Modulation
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Lithography print wafer with different exposure/focus

Customer A: using both Pattern based + ML down sampling vs fab POR
Customer B: using only ML down sampling vs fab POR
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Benchmark results

[1]
Customer A [2]
Customer B
PWQ analysis Baseline Pattern based
Dataset 1 + Machine Leaning PWQ analysis Baseline Machine Learning
Defect Hit Rate 1x 2X
Defect Hit Rate 1x 40x
# of Systematic 1x 4x
Weak Patterns # of System atic 1x 6Xx
Weak Patterns
# of Failing Process 1x 1.25x
Windows # of Falling Process 1x 1.5x
Windows
PWQ analysis Baseline Pattern based
Dataset 2 + Machine Leaning
Defect Hit Rate 1x 36x*
# of Svst " 1 575t [1] J. Jiang et al., "Reducing Systematic Defects using Calibre Wafer Defect Engineering and
ot Systematic X X Machine Learning Solutions,” 2020 International Workshop on Advanced Patterning Solutions
Weak Patterns (IWAPS)
# of Failing Process 1x ox [2] Y.M a,J Optlz e"f al, “Cross produces hotspot detection with Calibre SONR: A machine
Windows learning technique” 2020, DAC conference

*note that dataset 2 has large improvements as the POR method sampled a large number of

nuisance defects of same pattern
SIEMENS
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ROI (Return-Of-Investment)

Proposed method ROI Calculation
technical benefits

Volume production R&D Development

Higher SEM defect hit rate with Save tool time for additional rounds of SEM review/inspection but achieve same defect discovery goal,
lower SEM review defect count Less review means engineer time saved for defect analysis

Customer POR: 1x
Proposed method:2x

Expedite volume production of customers with multiple Expedite development cycle by reducing
products (common IP->solve 1 product, benefits many); mask re-spin rounds which save significant
amount of money and time;

Discovery more weak patterns
with less rounds of SEM
review/defect inspection

Reduce yield loss by reducing design systematics which Decrease yield ramp up time
makes each wafer more profitable;

Customer POR: 1x Reduce reliability issues

Proposed method:4x
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Conclusion

* Proposed pattern based + machine learning based defect down sampling flow

« EXxperiments shows the proposed flow provides :
* Increased defect hit rate
* More accurate lithography process window
* More systematic pattern varieties found

« Return-Of-Investment analysis shows proposed method benefits in:
« Tool and engineer time saving
* Mask re-spin reduction and yield improvements
* Yield ramp up acceleration and reliability issue reduction
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