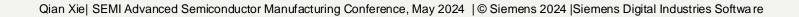
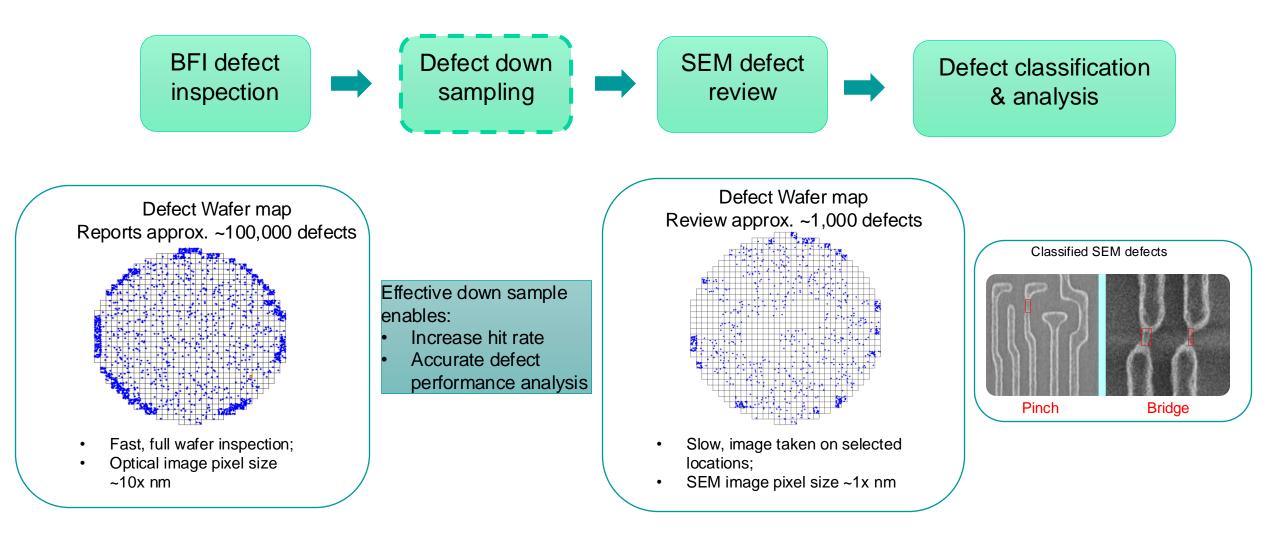
Effective downsampling techniques for SEM defect inspection using design insights in machine learning

Qian Xie, S Keerthibala Viswanatha, Srividya Jayaram, Sudheesh Krishnankutty, Frederic Huguennet, Rakesh Soni, Aparna Basu

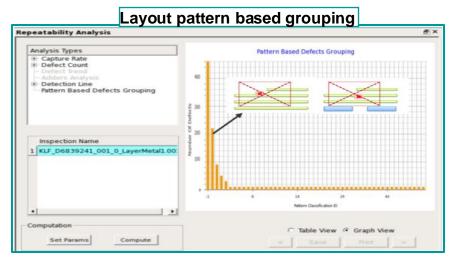

SIEMENS EDA, Digital Industries Software

Qian Xie| SEMI Advanced Semiconductor Manufacturing Conference, May 2024 | © Siemens 2024 |Siemens Digital Industries Software

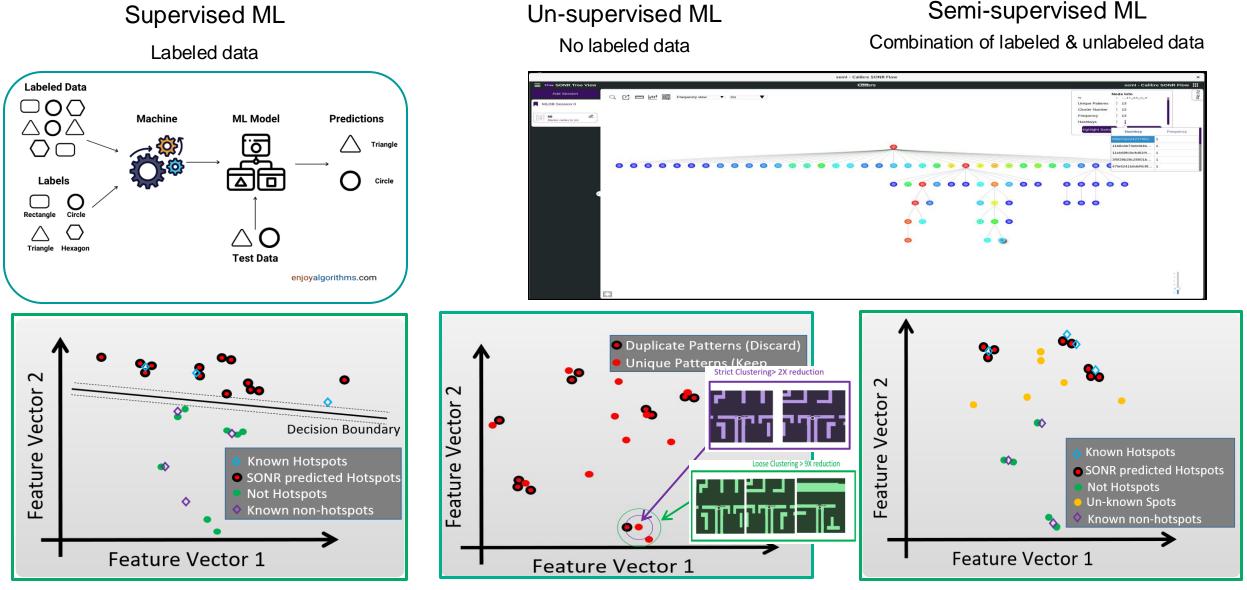

Outline

- Introduction
- Methodology
- Experiments and Results
- Process Window Qualification
- ROI (Return-Of-Investment)
- Conclusion

SIEMENS

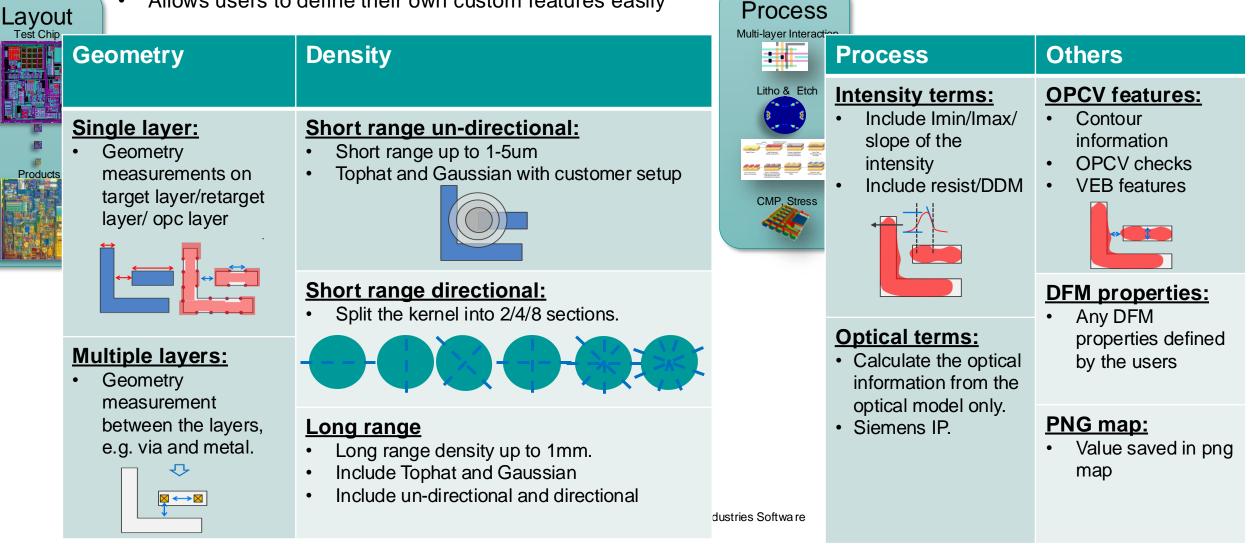

Introduction to wafer defect down sampling flow

Methodology

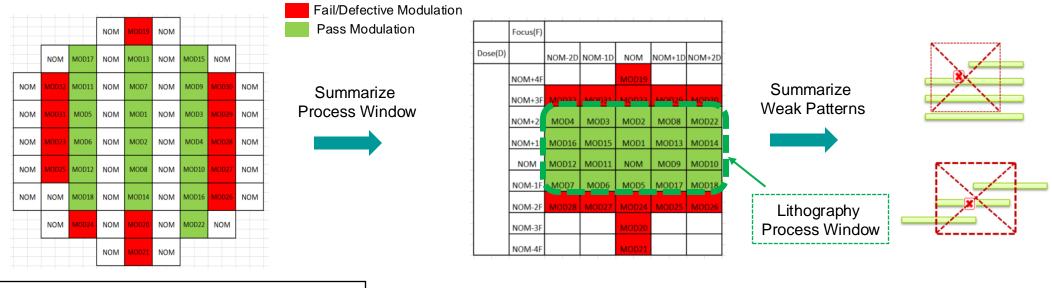

-- Defect down sample with design and process information

- Design systematics in wafer manufacturing:
 - Design systematics are often seen in R&D stage of new tech node development
- Process and design systematics can happen during yield ramp up even HVM, especially on wafer edge dies
- Defect down sampling in Calibre Wafer Defect Management (GUI based):
- Layout pattern based: perform pattern-based defect grouping, sample as many pattern variety as possible
- Machine learning based (integrating Calibre SONR): with features not limited to layout geometry, but various design/process/defect signal features, sample based on selected feature group similarity

Qian Xie| SEMI Advanced Semiconductor Manufacturing Conference, May 2024 | © Siemens 2024 | Siemens Digital Industries Software


Machine learning methods in Calibre SONR

Qian Xie| SEMI Advanced Semiconductor Manufacturing Conference, May 2024 | © Siemens 2024 | Siemens Digital Industries Software


Calibre SONR feature engineering

- Feature Engineering is one of the most critical tasks in success with ML applications.
- Internal SONR features include layout and process information
- · Allows users to define their own custom features easily

Experiments and Results

Process Window Qualification

SIFMENS

Lithography print wafer with different exposure/focus

Customer A: using both Pattern based + ML down sampling vs fab POR Customer B: using only ML down sampling vs fab POR

Benchmark results

Customer A^[1]

PWQ analysis Dataset 1	Baseline	Pattern based + Machine Leaning
Defect Hit Rate	1x	2x
# of Systematic Weak Patterns	1x	4x
# of Failing Process Windows	1x	1.25x

PWQ analysis Dataset 2	Baseline	Pattern based + Machine Leaning
Defect Hit Rate	1x	36x*
# of Systematic Weak Patterns	1x	57x*
# of Failing Process Windows	1x	2x

Customer B^[2]

PWQ analysis	Baseline	Machine Learning
Defect Hit Rate	1x	40x
# of Systematic Weak Patterns	1x	6х
# of Failing Process Windows	1x	1.5x

[1] J. Jiang et al., "Reducing Systematic Defects using Calibre Wafer Defect Engineering and Machine Learning Solutions," 2020 International Workshop on Advanced Patterning Solutions (IWAPS)

[2] Y.Ma, J Optiz et al, "Cross produces hotspot detection with Calibre SONR: A machine learning technique" 2020, DAC conference

*note that dataset 2 has large improvements as the POR method sampled a large number of nuisance defects of same pattern

Qian Xie| SEMI Advanced Semiconductor Manufacturing Conference, May 2024 | © Siemens 2024 | Siemens Digital Industries Software

SIEMENS

ROI (Return-Of-Investment)

Proposed method	ROI Calculation		
technical benefits	Volume production	R&D Development	
Higher SEM defect hit rate with lower SEM review defect count Customer POR: 1x Proposed method:2x			
Discovery more weak patterns with less rounds of SEM review/defect inspection Customer POR: 1x Proposed method:4x	Expedite volume production of customers with multiple products (common IP→solve 1 product, benefits many);	Expedite development cycle by reducing mask re-spin rounds which save significant amount of money and time;	
	Reduce yield loss by reducing design systematics which makes each wafer more profitable; Reduce reliability issues	Decrease yield ramp up time	

SIEMENS

Conclusion

- Proposed pattern based + machine learning based defect down sampling flow
- Experiments shows the proposed flow provides :
 - Increased defect hit rate
 - More accurate lithography process window
 - More systematic pattern varieties found
- Return-Of-Investment analysis shows proposed method benefits in:
 - Tool and engineer time saving
 - Mask re-spin reduction and yield improvements
 - Yield ramp up acceleration and reliability issue reduction

Thank you!

Contact: <u>qian.xie@siemens.com</u>

Qian Xie| SEMI Advanced Semiconductor Manufacturing Conference, May 2024 | © Siemens 2024 | Siemens Digital Industries Software

