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Abstract—A machine learning (ML) based approach is 

proposed for analyzing Scanning Electron Microscope (SEM) 

images and classifying review defects. Accurate and timely SEM 

image analysis is crucial and impacts manufacturing yield. The 

state-of-the-art object detection model YOLOv8 (You Only Look 

Once version 8) is used as it offers a good balance between 

accuracy and inference speed. This work demonstrates the utility 

of YOLO for SEM ADC and extends capability using ensemble 

voting to achieve higher quality results.  
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I. INTRODUCTION 

In the current semiconductor fab process flow, defect 
analysis is done by human experts that can be both time 
consuming and prone to error as it requires long hours of focus. 
Software with hand-crafted rules to detect defects may be used 
to overcome the problem, but such rules are challenging to 
construct as image quality will usually vary for every layer-
process combination. Using machine learning (ML), a model 
can learn complex rules and generalize to various image 
qualities, enabling accurate detection of defects without human 
intervention. Experimental results confirm that trained YOLOv8 
(You Only Look Once version 8) [1], [2] model can predict 6 
types of defects with a mean Average Precision (mAP) of 0.79 
(at IoU=0.5, where IoU is Intersection Over Union – metric used 
to evaluate Deep Learning algorithms by estimating how well a 
predicted mask or bounding box matches the ground truth data) 
for unseen real-world fab process scanning electron microscope 
(SEM) images with varying image qualities. The training set is 
augmented with synthetic images containing relevant features 
and image attributes, and the prediction routine is extended into 
an ensemble approach to mimic automatic “ML recipe” 
creation. Special consideration was given to modern 

semiconductor fab resource constraints and the profiles of the 
potential users of the solution.  

II. METHODS 

A. Model Description 

Previous works [3]-[6] use YOLO to detect wafer defects in 
SEM images but the focus is on finding certain patterns in SEM 
images without comparing with intended design. Combining 
SEM and layout images as 2 channels was done in [7] but with 
the use of Generative Adversarial Network (GAN) model for 
defect detection involving only two defect types. Fig. 1 shows 
our current approach. 

YOLOv8 model is trained to receive as input a multichannel 
image with 1) SEM image in first channel, and 2) aligned design 
layout clip in second channel, and to predict as outputs 1) defect 
locations (via bounding boxes) and 2) defect types. The input 
can be extended to a third channel, for instance with extracted 
contours, but is not utilized in the current work. Based on this 
training scheme, the model is expected to learn abnormalities in 
SEM images by using layout images as reference. The defect 
types the model is trained to predict are missing pattern (M), 
added pattern (A), pinch (P), line-end extension (LE), line-end 

Fig.  1. YOLOv8 is trained to predict defect locations and defect 

types by comparing SEM image with aligned layout image. 



pullback (LP), and bridge (B). Fig. 2 shows a sample prediction 
for each defect type. 

 

B. Dataset 

It is difficult to obtain sufficient SEM images and design 
layouts for model training as they are rarely shared by wafer 
fabs. Moreover, not every SEM image contains a defect type that 
the model is trained to predict. Therefore, a GAN-based data 
augmentation technique is employed (Fig. 3) to grow and have 
more control over the input set. Specifically, Conditional GAN 
(cGAN) [8] for image-to-image translation is used. First, using 
non-defective SEM/layout image pairs, the GAN is trained to 
generate synthetic SEM images from layout images. Then, by 
deliberately introducing defects into layout images, for example, 
by randomly erasing/adding patterns, and feeding in the 
modified layout image into trained generator model, synthetic 
SEM images with desired defects is obtained. To add realistic 
variety to the synthetic set, multiple cGAN models were trained 
to generate SEM images from different vendor sources, wafer 
fabs, and process conditions.  

 Although resource constraints provide a natural governor to 
the size of the training set, in general more data and more 
examples leads to a better model. The final dataset used for 
modeling consists of 355 actual images from 5 wafer fabs, and 
1,302 synthetic images. 80% of actual images and 100% of 
synthetic images are used for training and the remaining for 
testing. The number of instances of each defect type is shown in 
Table I. While there persists an imbalance in defect counts, the 

authors assert sufficient coverage for each type in this study.
  

 

TABLE I 

NUMBER OF INSTANCES FOR EACH DEFECT TYPE 

Image 

Type 

Defect Type 

M A P LE LP B 

Synthetic 1,586 1,201 361 135 158 735 

Actual 1,198 187 286 533 510 31 

Total 2,784 1,388 647 668 668 766 

 

C. Model Training 

 Depending on the choice of model architecture and the 
number of epochs, the model is trained on a Linux (RHEL8) 
machine equipped with two NVIDIA A100 GPU cards, training 
took 2~10 hours. Therefore, automated hyperparameter tuning 
is not considered in this work and many hyperparameters, along 
with train settings, were chosen heuristically based on trial-and-
error. Every model is trained for 500 epochs with automatically 
determined batch size, 640x640 image size, and data 
augmentation with on-the-fly image transformations such as 
scale, shear, and flip. 

III. RESULTS 

A. Single Model with Various Architectures 

Five different YOLOv8 architectures were studied by 
varying the size of the feature extraction backbone of the 
network, which is the first block of a YOLOv8 forward pass. 
Fig. 4 shows the trained model performance on unseen test data, 
in terms of mean Average Precision (mAP) at IoU=0.5, when 
different architectures of YOLOv8 are chosen. The IoU 
threshold determines the required accuracy of the detected 
defect locations (bounding boxes). A value IoU=0.5 indicates 
that a predicted bounding box is correct if it overlaps at least 
50% with the ground truth bounding box. The authors observe 
that performance spikes when using the ‘Medium’ model. 
Inference latency is affected by the size of the model and should 
be an important consideration for other studies. However, since 
the mAP performance difference is so stark, the tradeoff 
between speed and accuracy was not rigorously studied.   

Fig.  2. Sample predictions for various defect types. From left to right: Missing Pattern (M), Added Pattern (A), Pinch (P), line-end extension 

(LE), line-end pullback (LP), and bridge (B). 

Fig.  3. GAN is trained to generate synthetic SEM image for a given 

layout image. 



 

B. Prediction Results by Defect Type 

The best performing model was built with the “Medium” 

YOLOv8 architecture, and the prediction results for this model 

are included in Table II. The per-class performance shows a 

distinct difference in quality depending on defect type. This 

result suggests that a single model should not be used for all 

defect types in production. A more in depth look at defect-

specific performance of each model architecture is shown in 

Table III. 

A study of Table III reinforces the give-and-take nature of 

model performance in the SEM ADC application with best 

defect performance spreading across “Small”, “Medium”, and 

“Large” model architectures. While this is a concerning issue, 

it can be overcome by targeting different architectures to 

specific defect types to create an “ML recipe”. Due to the lack 

of “ML recipe” intuition for fab engineers, any usage of ML 

SEM ADC modeling in production will require automated 

recipe setup. Towards this goal, the following section will 

discuss a potential solution to this issue. 

 

TABLE II 

MODEL PERFORMANCE ON TAIN/TEST DATA 

Dataset Per-class AP at IoU=0.5 

M A P LE LP B 

Train 0.892 0.969 0879 

 

.0779 0.830 

 

0.985 

 
Test 0.765 

 

0.477 0.832 0.883 0.849 0.901 

 

B. Ensemble Voting 

The next step in this work is to investigate ways of turning 
the ML SEM ADC model into a manageable solution for fab 
engineers. Resource constraints, including time-to-recipe and 
limits to ML modeling knowledge in the fab, must be considered 
and addressed if this solution is to be adopted.  

Table III shows the performance of best models with respect 
to individual defect types. ‘Small’ model shows best 
performance for detecting bridges in train set, while ‘Medium’ 
model shows best performance for detecting missing patterns, 
pinches, and line-end extensions/pullbacks in test set. Finally, 
‘Large’ model shows best performance for detecting added 
patterns and bridges in test set. Based on this result, it is clear 
that a single model will not predict well on all defect types. It is 
also not ideal to have different models (i.e, “ML recipes”) for 
each defect type. Therefore, the five models are combined for 
use in an ensemble voting prediction routine. 

The ensemble voting strategy is shown in Fig. 5. All relevant 
models predict on an image and all resulting bounding boxes are 
collected. With the IoU threshold of 0.5, overlapping bounding 
boxes signify multiple models flagging the same defect and are 
counted as “V” number of votes. For instance, if 2 bounding 
boxes overlap on a defect area, the defect is given 2 votes. And 
with 3 bounding boxes, that defect is logged as having 3 votes. 
The assumption driving this strategy is that agreement between 
disparate models suggests correct prediction. The authors did 
not rigorously study model choice for ensemble inclusion, 
instead opting to include all models in the current work. 

Dataset Defect Type YOLOv8 Variant 

Extra-Small Small Medium Large Extra-Large 

Train 

M 0.805 0.885 0.892 0.880 0.870 

A 0.928 0.959 0.969 0.958 0.959 

P 0.815 0.858 0.879 0.835 0.814 

LE 0.662 0.795 0.779 0.803 0.776 

LP 0.719 0.824 0.830 0.808 0.816 

B 0.934 0.989 0.985 0.979 0.976 

Test 

M 0.653 0.705 0.765 0.740 0.716 

A 0.451 0.436 0.477 0.478 0.407 

P 0.780 0.785 0.832 0.780 0.801 

LE 0.751 0.827 0.883 0.817 0.793 

LP 0.835 0.770 0.849 0.825 0.846 

B 0.950 0.856 0.901 1.000 1.000 

TABLE III 
PER-CLASS PERFORMANCE OF BEST MODELS ON TRAIN/TEST DATA (mAP@IoU=0.5). BOLD INDICATES BEST PERFORMANCE PER ROW 

Fig.  4. Overall single model performance on test data depending on 

architecture shown in mAP(IoU=0.5). 

mailto:mAP@IoU=0.5


The results of ensemble voting are shown in Table IV. Both 
the True Positive (TP) and False Positive (FP) rates are 
improved when moving from single model prediction to the 
voting classifier. In this work, a prediction is considered as TP 
if predicted bounding box overlaps at least 30% with ground 

truth bounding box (i.e., IoU≥0.3), regardless of predicted 

defect type. Balance between TP and FP degrades significantly 
with single voters (V=1) and both four and five voter (V=4, 
V=5) thresholds. This highlights the benefit of choosing the 
correct number of voters. For practical use, the selection of 
threshold V can be a practical and quantifiably simple method 
for creating the “ML recipe” that would run in production in a 
semiconductor fab facility.   

IV. CONCLUSION 

Accurate and timely detection of defects in SEM images is 
important for yield management. Detection must involve 1) 
locating the defect, as it provides information about which part 
of design layout the defect affects, and 2) classifying defect type, 
as it provides clues to process issues. Results of this paper 
confirm that when combined into an ensemble voting strategy, 
such detection can be fully automated with high accuracy based 
on machine learning models.  

TABLE IV 

PERFORMANCE FOR SINGLE AND ENSEMBLE MODELS 

Single Model  
Extra 
Small 

Small Medium Large Extra 
Large 

TP Rate (%) 78.8 82.3 85.8 81.4 82.5 

FP Rate (%) 15.3 15.4 15.9 14.4 15.9 

Ensemble with (V # of votes) Threshold 

 V=1  V=2 V=3 V=4 V=5 

TP Rate (%) 92.9 88.8 84.5 77.5 68.4 

FP Rate (%) 28.4 15.1 11.6 7.7 5.2 

 Application of this work can involve seamless integration of 
the model into process failure identification to increase the 
accuracy of root cause analysis and faster problem solving by 
cross-probing between device nodes to view layout, schematic, 
netlists or by design rules. In future work, prediction of device 
electrical degradation by detected defects by seamless 
integration with Calibre® tools will also be explored. 
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Fig.  5. Ensemble voting strategy for three different model predictions (red, yellow, blue), with a confidence score in parenthesis. 


