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Abstract 

The semiconductor foundry industry faces challenges in 

managing diverse customer demands and complex 

manufacturing processes. Variations in the chemical vapor 

deposition process affect transistor parameters and yield. 

Siemens' Calibre® software with machine learning 

techniques create a virtual metrology model that outperforms 

traditional methods. An advanced process control system, 

incorporating design features and real-time data, improves 

process capability and reduces film thickness variations in 

high-mix product foundry fabs, as confirmed by control 

simulations. 
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Introduction 

The semiconductor foundry industry has undergone 

significant changes in recent years, with high product mix 

manufacturing becoming increasingly prevalent. The shift 

towards custom-designed products demands flexibility in 

manufacturing process. Managing multiple products within 

the fab is extremely challenging and involves numerous 

chambers and process steps, different designs and technology 

nodes, which is complex to coordinate (Figure 1). There is a 

critical need to develop effective strategies to manage high 

product mix manufacturing as lack of control in this 

environment can lead to reduced yields and increased costs.   

 

 
Fig. 1:  High product mix manufacturing in semiconductor foundry 

 

Chemical vapor deposition (CVD) processes are greatly 

affected in high product mix as the deposition thickness 

variations can occur due to device layout design and CVD 

process chamber condition drift. Figure 2(a) demonstrates the 

difference in film thickness between single and double 

pitches [1]. Figure 2(b) presents transmission electron 

microscopy (TEM) images that illustrate the discrepancies in 

silicon nitride film thickness between wide and narrow 

patterns [2]. Apart from the space width (pitch) between line 

patterns, several other design features that can impact film 

thickness variation [3]. The lack of thickness control across 

different layout designs and the resulting film variability can 

significantly affect key transistor parameters, such as 

threshold voltage and overlap capacitance, ultimately leading 

to yield loss [1]. 

 

 
Fig. 2: (a) schematic of the difference in film thickness for a single and 

double pitch (b) TEM images of silicon nitride film thickness differences 

between a wide and a narrow pattern 

 

Figure 3 depicts the drift in CVD film growth rate during a 

preventive maintenance (PM) cycle and the chamber-to-

chamber variations in different stages of the PM cycle. This 

is due to the diminishing surface area and reactive gas 

consumption on the inner wall of the CVD chamber, which 

are consequences of the accumulated thickness [4]. Since the 

utilization of multiple chambers is inevitable, the chamber-

by-chamber variation is a concern. PM cycle time-series 

variation and achieving chamber matching in the CVD 

process need to be managed to reduce throughput loss [4]. 

 

 
Fig. 3: PM cycle and chamber-to-chamber film growth rate variations 

 

Variation in CVD film thickness is from a combination of 



  

design features and chamber characteristics which can be 

challenging to control using run-to-run (R2R) advanced 

process control (APC) methods. Having several new product 

introductions (NPI) in a single day is also a challenge. In this 

paper, a machine learning (ML) based virtual metrology 

(VM) approach is proposed as an effective process control 

solution for high product mix fabs. This is demonstrated on 

CVD process control loop through control simulation. 

Methodology 

Ideally, for precise control each wafer should be monitored 

for process control, but this requires additional metrology 

resulting in longer processing times and overall cost. A trade-

off between cost and quality can be obtained using VM. VM 

utilizes data from the process chamber, known as fault 

detection and classification (FDC), to predict the metrology 

results. These can then be integrated in process control 

system, particularly in R2R [5]. Moreover, specific design 

features, such as pattern density and perimeter, can be 

extracted and utilized for prediction across multiple dies and 

technologies and can be used during NPI and in subsequent 

production stages [3]. In this study, Siemens' Calibre® 

software is used to extract design features from a variety of 

layouts across different technology nodes. Calibre® Fab 

Insights [6-8] is used to incorporate these design features into 

the chamber-level FDC data, using ML techniques such as a 

modified gradient boosted tree algorithm, to construct the 

VM model. The data used for modeling is sourced from a 

high-volume foundry fab that includes three different 

technology nodes and involves 70 distinct products running 

on 15 CVD chambers (with 5 equipment units, each equipped 

with 3 chambers). 70% of the data is utilized for model 

training and remaining 30% for model testing. 

Figure 4 illustrates the results of the VM modeling. The X-

axis and Y-axis represent the actual and predicted thickness. 

Due to confidentiality, the specific thickness targets for each 

node have been omitted. Each color indicates the chamber, 

and the shape represents the product. R2 metric is used to 

assess the model fitness. VM model with both design features 

and FDC data shows significantly superior performance. 

 

 
Fig. 4: VM modeling with and without incorporating design features and 

FDC 

Comparing VM model with design data shows better results 

against without design data. When comparing the VM model 

with and without FDC, it shows that a VM model solely 

based on design features lacks practicality. 

Figure 5 shows comparison by product, evaluating the RMSE 

of the VM model with and without design features. Figure 6 

provides a comparison by chamber, assessing the RMSE of 

the VM model with and without FDC. Across the board, the 

VM model with both design features and FDC data 

consistently exhibits significantly better performance. 

 

 
Fig. 5: Segmented comparison of the VM model with and without design 

features by product 

 

 
Fig. 6: Segmented comparison of the VM model with and without FDC by 

chamber 

 

Results 

Figure 7 illustrates proposed APC system, using VM model 

for R2R control. This model uses design features, FDC, and 

the incoming measurement to achieve the desired target 

thickness. Difference between the actual and predicted 

thickness (prediction error) goes out of spec, then the VM 

model is updated automatically by incorporating additional 

data within a predefined time window. 

 

 
Fig. 7: Schematic diagram of APC system 

 

Figure 8 presents the time-series evaluation results of the 

APC system through control simulation. Process capability 



  

(Cpk) is improved from 0.86 to 1.30. Variations in the R2R 

deposition film thickness is mitigated and desired target 

thickness is achieved by the integration of the APC system, 

which updates the VM model and the CVD process recipe.  

Due to the limited size of the dataset, though the control 

simulation focuses on a single technology node (YY nm), 

multiple products are still processed across multiple 

chambers. 

 

 
Fig. 8: Control simulation result of APC system 

 

Figure 9 and Figure 10 illustrate the improvement in 

thickness variation achieved through control simulation, 

comparing the results with and without the implementation 

of the APC system.  

 

 
Fig. 9: Control simulation result of APC system by chamber 

 

 
Fig. 10: Control simulation result of APC system by product 

 

Figure 9 shows the improvement in thickness variation by 

chamber, and Figure 10 shows the improvement by product. 

In the absence of the APC system, the thickness is 

inadequately adjusted to the target value in each chamber due 

to inability of operators or traditional control methodologies 

to manually trace and compensate for all sources of variations. 

In contrast, when the APC system is employed, both the 

chamber to chamber and product to product film thickness 

variations are significantly reduced. This confirms the 

effectiveness of integrating the APC system with the VM 

model into the CVD process, particularly in a high-mix 

product foundry fab with numerous equipment units. 

Conclusion 

There is growing demand for increased manufacturing 

flexibility due to custom design products. Integrating an ML-

based VM model with design features and FDC into the APC 

system is proposed as an effective process control solution 

for high-product-mix manufacturing. Simulation results 

confirm the remarkable effectiveness of this solution in the 

CVD process, within a high-product-mix foundry fab. 

References 

[1] M. Belyansky, “Thin film deposition for front end of line: the effect 

of the semiconductor scaling, strain engineering and pattern effects,” 

in Handbook of Thin Film Deposition, K. Seshan, and D. Schepis, 

Eds., Kidlington, Oxford: William Andrew, Elsevier, p. 231, (2018). 

[2] H. Cho, N. Lee, H. Choi, H. Park, C. Jung, S. Song, H. Yuk, Y. Kim, 

J. Kim, K. Kim, Y. Choi, S. Park, Y. Kwon, and H. Jeon, “Remote 

Plasma Atomic Layer Deposition of SiNx Using Cyclosilazane and 

H2/N2 Plasma” Applied Sciences, vol. 9, no. 17, p. 3531, (2019). 

[3] N. Greeneltch, H. Yin, A. Torres, M. Tao, S. Lubin, S. Jayaram, I. 

Kissiov, M. Niehoff, M. Wolf, P. Jungmann, and T. Bailey, "Design-

aware virtual metrology and process recipe recommendation", DTCO 

and Computational Patterning II, Proceedings of SPIE vol. 12495, 

(2023). 

[4] M. Ueda, K. Nakamura, T. Sato, and T. Itani, “Improvement of 

Thickness variation and Productivity in LP-CVD process by APC 

system,” Proceedings of AEC/APC Symposium Asia, (2015). 

[5] Y. Xie, and R. Stearrett, “Machine learning based CVD virtual 

metrology in mass produced semiconductor process,” Preprint at 

https://doi.org/10.48550/arXiv.2107.05071. 

[6] H. Lee, D. Kim, S. Choi, S. Hong, D. Kwak, S. Jayaram, S. Paek, M. 

Kwon, Y. Kim, H. Jung, I. Kissiov, M. Tao, A. Torres, N. Greeneltch 

and H. Lee, “Reliability Prediction for Automotive 5nm and 7nm 

Technology node by using Machine Learning based Solution,” 

Proceedings of 7th IEEE Electron Devices Technology & 

Manufacturing Conference (EDTM), (2023). 

[7] D. Kim, H. Lee, S. Choi, S. Hong, S. Lee, D. Kwak, S. Jayaram, S. 

Paek, M. Kwon, Y. Kim, H. Jung, I. Kissiov, M. Tao, A. Torres, N. 

Greeneltch and H. Lee, “AI-guided reliability diagnosis for 5,7nm 

automotive process,” Metrology, Inspection, and Process Control for 

Advanced Lithography + Patterning, Proceedings of SPIE vol. 12496, 

(2023). 

[8] S. Jayaram, H. Lee, D. Kim, S. Choi, S. Hong, S. Lee, D. Kwak, S. 

Paek, M. Kwon, Y. Kim, H. Jung, I. Kissiov, A. Torres, N. Greeneltch, 

M. Tao and H. Lee, “Automotive Process Reliability Prediction for 

5,7nm using ML,” Proceedings of 34th Annual SEMI Advanced 

Semiconductor Manufacturing Conference (ASMC), (2023). 

https://doi.org/10.48550/arXiv.2107.05071

