An Artificial Intelligence Machine Learning (AI/ML) Approach with Cross-Technology Node Learning for Multi-Layer Process Defect Predictions

Jonathan Ho/AMD, Xiaoyuan Qi, Fan Jiang, Yuyang Sun, Le Hong/Mentor-Siemens

Agenda

- Introduction
- Feature- vs. Pattern-based approaches
- Defect Prediction with ML Platform
- Key Factors in ML Model
- Single-layer/Multi-layer Defect Predictions
- Defect Prediction Flow
- Application Examples
- Cross Node/Cross Layer Defect Predictions
- Summary

Introduction

Defect Prediction

- Traditionally pattern matching is based on known defect patterns.
- The desired defect prediction in the industry has grown more than just pattern similarity matching.

Common Challenges

- Complex multi-layer interactions
- Understanding the root cause of the defects
- Cross-node/cross-layer defect predictions
- Incorporating previous learning data in defect predictions
- Utilizing variety of data inputs for model training/prediction beyond layouts

Challenges for Design Houses

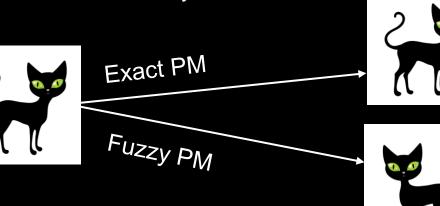
- Limited known defects and FA data
- Lacking process knowledge and layout being the main input source
- Delays in foundry feedback

Solutions

 Use a feature-based AI/ML platform to overcome these challenges and reduce process improvement time: Unlimited multi-layer features, defect root cause analysis, cross-node/cross-layer predictions, reuse the past learnings, ML platform to accept different types of features.

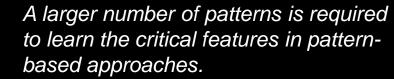
Analogy: Difference between Feature and Pattern based Approaches

Pattern Based Techniques – Pattern Similarity

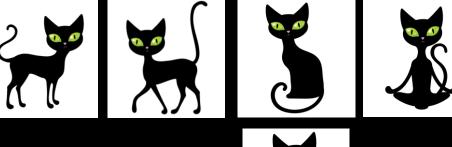


- Feature based techniques feature (signature) similarity
- Features used:
- Eyes
- Nose
- Ears
- Face
- Tail

- Finding the similarity in features by ML:
- Two diamond-shaped eyes
- A triangular shaped nose
- Two pointed ears
- Round face
- One tail



- The input patterns are limited for a design house.
- Some patterns could not be found in the predictions by pattern-based approaches.

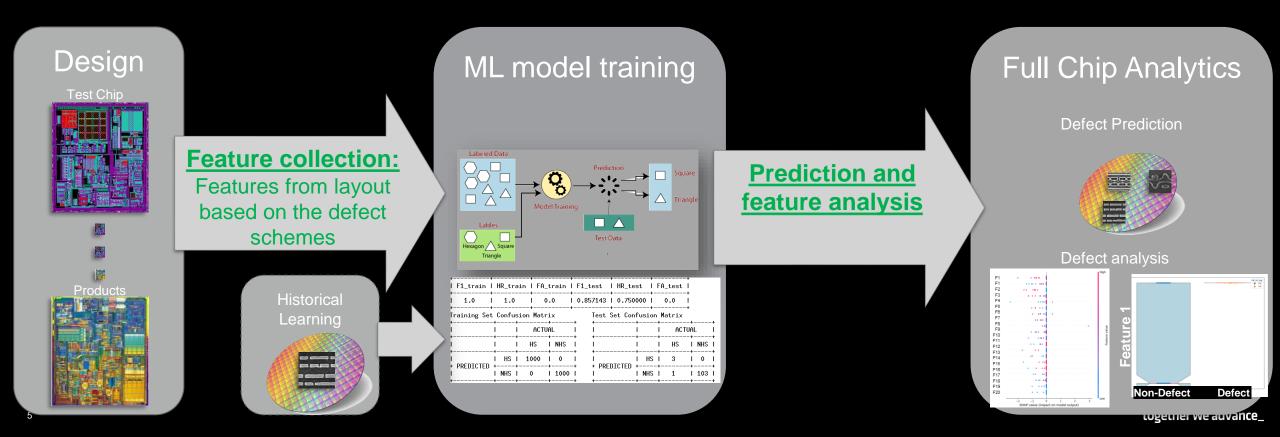


Similarity ranking

Feature-based Defect Prediction with ML Platform

- Feature-based ML platform:
 - Catching varieties of patterns with the same root cause
 - Root cause analysis

- Features:
 - Geometric features
 - Process features
- ML: Learn the criticality of the features and connect the features to the defect root cause(s)

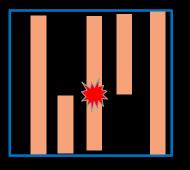


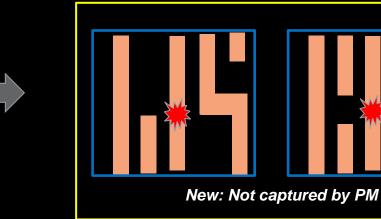
Key Factors in Machine Learning Model

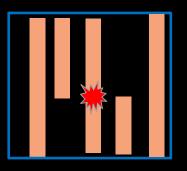
- Point of Interests (POIs)
 - Locations where the defects could occur.
 - Depends on defect scheme (*e.g.*, vias as POI in vias open).
- Hotspots(HS)/Non-hotspots(NHS) inputs
 - HS: POIs containing defects
 - NHS: POIs within a certain range of HS of, say, 1um, excluding HS
- Features
 - Depending on defect schemes
 - A generic set of features/defect scheme: ML to learn the criticality
- ML Model Metric
 - F1 score to evaluate ML model and to feedback for feature engineering, HS/NHS labeling, etc.

Single-Layer Defect Predictions

- Defect: Long metal with line ends on both sides in a dense line environment.
- HS predictions: new patterns involving jogs and multiple line end interactions

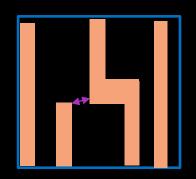


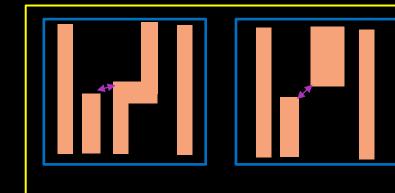




Captured by PM

- Defect: metal line corner to corner short.
- HS predictions: new patterns with different corner configurations



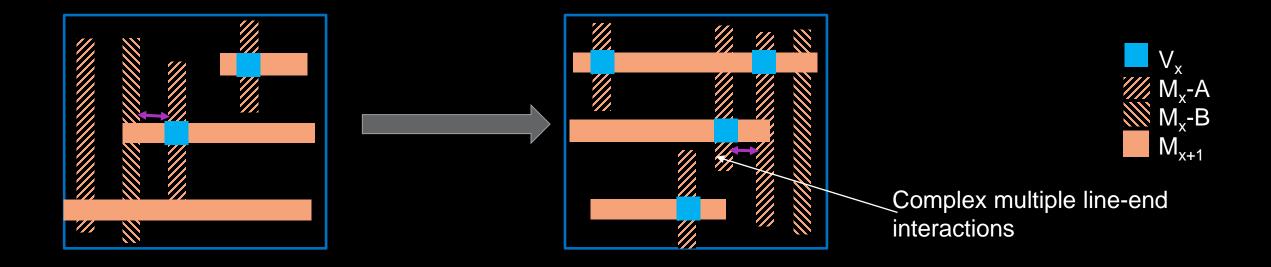


Captured by PM

AMD together we advance_

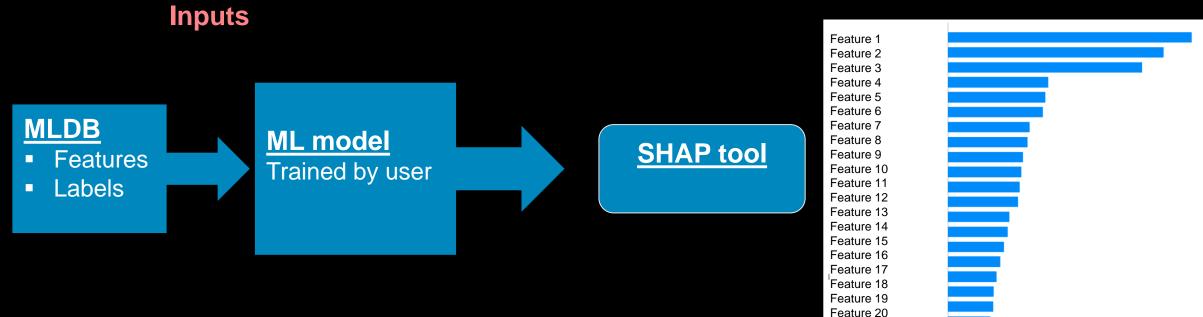
Multi-Layer Defect Predictions

- Defect: V_x-M_x Short (V_x Short to M_x in Non-SAV direction).
- Inter-layer features: via to metal enclosures, via-metal space, M_x/M_{x+1} combinations
- HS predictions: varieties of patterns with potential small process windows



Feature Ranking for M_x-V_x Short

- Feature ranking is done by SHAP (SHapley Additive exPlanations).
- SHAP Inputs: Features for HS/NHS, ML model
- SHAP Outputs: Feature ranking by SHAP values



Output: feature ranking

0 0

0.1

0.2

mean(|SHAP value|) (average impact on model output magnitude)

0.4

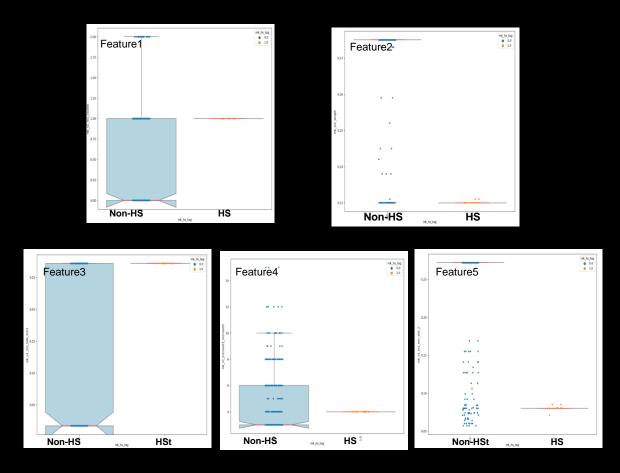
0.3

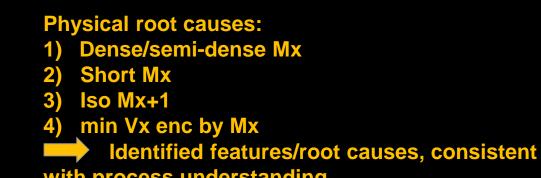
0.5

0.6

Root Cause Analysis

- Top features are selected from feature ranking.
- Compare feature distributions between Hotspots and non-Hotspots.
 - Physical root cause is a combination of the unique features in hotspots.





with process understanding

SONR Defect Prediction Workflow

Features from the layout

HS/NHS Labels

HS: Defect locationsNHS: Non-defect locations

Supervised ML Model

- ML models such as Neural Network (NN) models or decision tree models
- Auto hyperparameter search.

Feature Rank and Root Cause Analysis

- Ranking critical features through SHAP Analysis
- Root cause analysis through feature analysis of the topranked features

HS Prediction

 Predicted hot spots based on the AI/ML model and ranked by probability

Pattern Classification

 Combining the patterns with same process defect root cause into the same pattern category

Flow expectation:

- Analyze features and find out the process defect root causes from layout.
- Identify additional variants of process sensitive layouts.
- Classify the patterns for better downstream actions.
 - FA recommendations
 - HS replacements in design flow

Defect Prediction Applications for Design Houses

Collect more HS data

- Select new HS (not caught by PM) for FA (TEM/SEM) and gain process improvement experience.
 - 20-30% of the newly identified HS show similar process sensitivity to the original HS

Understand the process defect root causes

Leveraging the HS data and working with foundries to fix process issues quickly

Early Defect Fix in the Design Flow

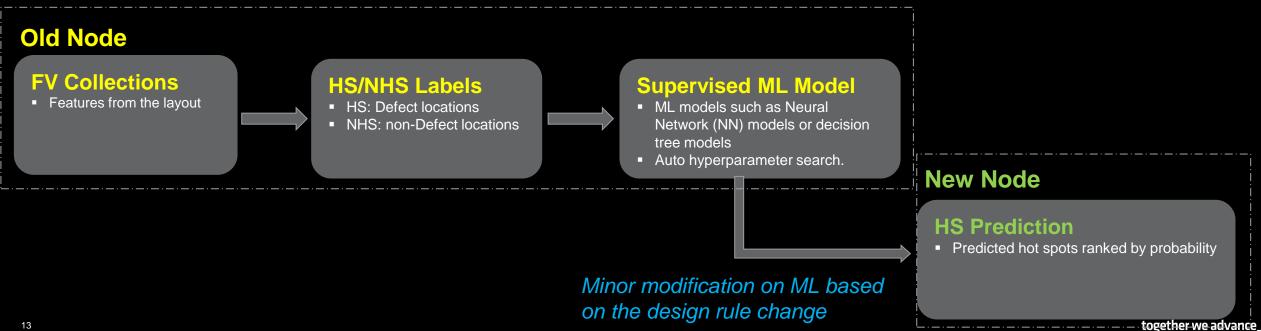
Replacing the HS by known good pattern configuration in the design flow*

*Cain, J. Fakhry M., Pathak P., Sweis J., Gennari F., Lai Y.-C., "Applying machine learning to pattern analysis for automated in-design layout optimization", Proc.
SPIE 10588, Design-Process-Technology Co-optimization for Manufacturability XII, 1058805 (2018).

Cross Node and Cross Layer Prediction

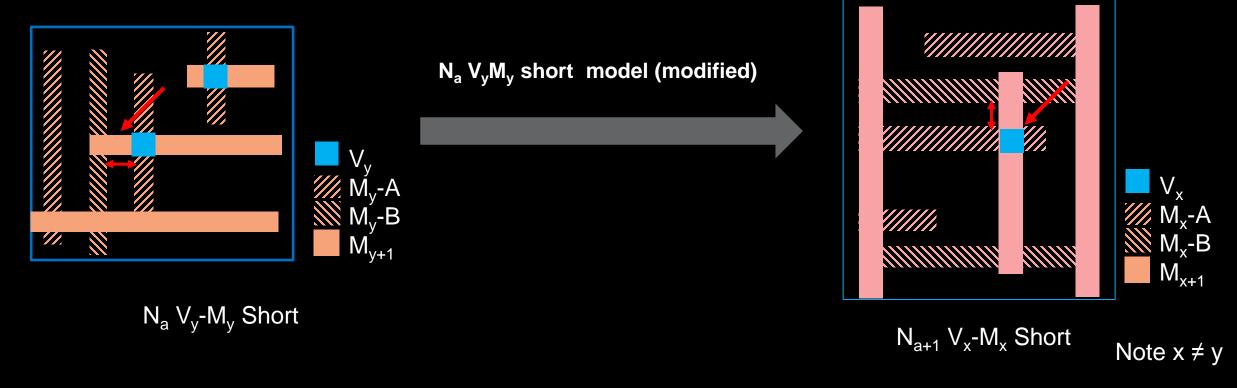
Why Cross-node Defect Prediction

- Speed up defect learning before hotspot data available in early technology development stage.
- Utilize the past learnings more effectively and take proactive actions to avoid similar defects.
- Save costs and time: directly use the existing data for prediction. No need to collect FA on similar defects.
- The Approach for the Cross-node/layer Prediction
 - Use features which are independent of technology, (e.g., number of metal lines in the nearest 2 pitches).
 - Scale and normalize features properly: the same features fall into the same feature space across technologies, e.g. min via enclosure. Most of failures happen at max/min feature values, e.g. min enclosure.
 - Cross layers: rotation in feature space if necessary



$N_{a+1} M_x/V_x$ Prediction with a $N_a M_y/V_y$ ML Model

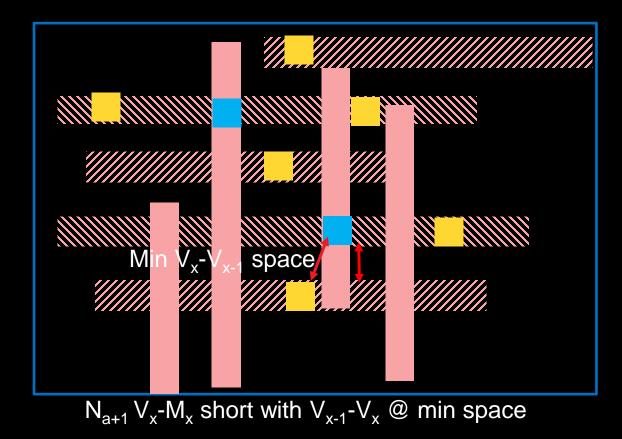
- A new node N_{a+1} and no FA available: the process of M_x/V_x is similar to that of M_y/V_y in the previous node N_a .
- Identify potential systematic V_x - M_x short patterns on N_{a+1} based on known V_y - M_y shorts in N_a .
- Run the Defect prediction flow on N_{a+1} with $N_a M_x/V_x$ model.

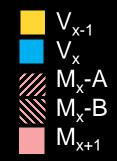


- - -

Applying Previous Learning to Identify the Potential Weak Process Corner

- Previous process learning: via tends to bulge, which reduces the short margin.
- Applying previous process learning in V_x-M_x short :
 - \rightarrow Potential weak process corner : V_{x-1} V_x at minimum space in the potential V_x/M_x short environment





Summary

Feature-based ML Defect Predictions to Accelerate the Process Improvement Learning

- Single/multi-layer predictions demonstrated
- More variants of potential defective patterns identified
- Process defect root cause analysis provided
- Cross-node/layer defect predictions
- Applying previous process improvement learnings experience to identify the potential weak process corners

Workflow Developed to Meet Design Houses' Needs

- Layouts and reduced # of HS as Inputs
- Understanding process issues with defect root cause analysis
- Providing HS varieties for FA recommendations
- HS patterns to feed in the design flow for design quality improvements

#