1. Rigid body modes

Calculation of rigid body properties

This section discusses the theory used in the calculation of rigid body properties. Experimental
frequency response functions (FRFs) can be used to derive structural modes of a structure and the
inertia properties of a system.

These properties are:

* the moments of inertia

¢ the products of inertia

* the principal moments of inertia

In general two types of method are applied:

1. Afirst type determines the inertia characteristics using the rigid body mode shapes obtained from
test data. This is the Modal Model Method described in reference [1].

2. The second type starts from the mass line, i.e. the FRF inertia restraint of the softly suspended
structure. This mass line is used in a set of kinematic and dynamic equations, from which the rigid
body characteristics (mass, center of gravity, principal directions and moments of inertia) can be
determined (reference [2]).

Some of these methods also look for the suspension stiffnesses while others consider the mass of
the system as known (reference [3]).

This type of method is described in more detail below.
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Figure 1-1. Rigid body modes

Derivation of rigid body properties from measured FRFs
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Input data

FRFs are required in order to determine the rigid body properties. The input format is required to be
acceleration/force, and if this is not the case then a transformation can be applied. Rotational or scalar
(acoustic) measurements are not used in the rigid body calculations.

In theory 2 excitations and 6 responses are needed for the calculations. Practical tests show that best
results are obtained with at least 6 excitations (e.g. 2 nodes in 3 directions) and 12 responses need to be
measured.

Reference axis system

All the rigid body properties are calculated relative to a reference axis. The reference axis system is
defined by the three coordinate values of its origin and three euler angles representing its rotation.

Specification of the frequency band

Rigid body properties are calculated in a global (least squares) sense over a specified frequency band
between the last rigid body mode and the first deformation mode (see figure Rigid body modes).

Mass line value

The "mass line" value which is needed for the calculations, can be derived from the measured FRFs in
three ways:

1. If the rigid body modes and deformation modes are sufficiently spaced, the amplitude values (with
the sign of the real part) of the original, unchanged measured FRFs can be used. In this case there
is no need to have the deformation modes available for the rigid body modes analysis.

2. If the spacing between rigid body modes and deformation modes is not sufficient, the FRFs have to
be corrected. In this case the influence of the first deformation modes, if significant, can be
subtracted from the original FRFs. The amplitude values (with the sign of the real part) of
synthesized FRFs are used.

3. If accurate measured FRFs are not available in the frequency range directly above the rigid body
modes, then lower residual terms which lie in a frequency band which contains the first
deformation modes can be used. Residual terms can be determined from a modal analysis. Lower
residuals represent the influence of the modes below the deformation modes and are therefore
representative of the rigid body modes.

Calculation of the rigid body properties

Calculation of the reference acceleration matrix
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Coordinate transformation _

Coordinate transformation

If nodes, corresponding to the response DOFs used do not have global directions or when a reference
(not coincident with the global origin) is specified, then a rotation of the measured accelerations
according to the global/reference axis system is needed.

All three directions (+xX,+Y, +2) are required. For the three measured (local) accelerations of output
node "o0":

(Xl =[N XY, Eqn 6-1
where:
{X}, the global acceleration vector
X} the local acceleration vector
[r1,”’ the rotation matrix (global to local) of node "0"

If a reference is specified, which does not coincide with the global origin, the three measured
accelerations of output node "0" are also rotated according to the axis of the reference system.

(Xt = (11170 (XY, Eqn 6-2

where:

[T], the rotation matrix (global to local) of node "r

System of equations

For all spectral lines of the selected band, for all response nodes P, Q,... and for all inputs 1,2, ...
under consideration
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acceleration of input 1 towards global axis system
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where:
Xpy Yo, Zp the global coordinates of node P (or towards the reference axis system)

This over-determined system of equations (number of output DOFs is higher than or equals 6) is solved
for each spectral line in a least square sense. In this way at each spectral line, the reference acceleration
matrix is found. Further, a general solution of the reference acceleration matrix over the total frequency
band is calculated by solving in a least squares sense the global set of equations containing all outputs
and all spectral lines.

Calculation of the reference force matrix

Coordinate transformation

For input force {F;} in the local X-direction of node

1.0
{Fi} =7, |‘Ill.{|' Egn 64

1K I'J

where:

[T the rotation matrix (global to local) of node "i

If the reference "r" is not coincident with the global origin:
1.0
iFt = '-ll'r|a|?'|._ H)R0.0 Eqn 6-5
0.0

where:

[T]7 the rotation matrix (global to local) of reference node "r

Similar equations are used when the input has Y-direction or Z-direction.
System of equations:

Forallinputs 1,2, ...:
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Calculation of the co-ordinates of the center of gravity and moments and products of inertia _
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reference force matrix towards global aais system for input 1

where:
{F} the applied force at input 1
X1, Y1, 24 the global coordinates of node corresponding with input 1

Calculation of the co-ordinates of the center of gravity and moments and products of
inertia

For:
(i) each input and each spectral line

(ii) each input over the total band:
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where:
Xcogr Yeogr the global coordinates of the center of gravity
Zcog
hoa bys 122 the moments of inertia towards the global axis system
heye bz Iz the products of inertia towards the global axis system
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This set of equations can be solved in two steps. First, the coordinates of the center of gravity can be
solved from the first three equations (per reference). Afterwards, these values can be filled in the last
equations to solve the inertia moments and products.

1. For each input and for each spectral line and for each input over the total band:

Fo —mayg {h — M, i, I“"‘:l
{Fp, =magl = | ma; 0 —may| {Yeaup Eqn 6-3

F_u; —may, = Bty 1 Zoag

2. Foreach input and for each spectral line and for each input over the total band:
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At each spectral line, these over-determined sets of equations (number of inputs larger than or equal to
2) are solved in a Least Square sense. A global solution for these rigid body properties over the total
band can be found out of the global acceleration matrix over the total frequency band too (see equation
6-3). If wanted, only the second set of equations is solved.

In this case the coordinates of the center of gravity are presumed to be known and specified by the user.

Ingeneral: {Ly} = [A]{wg}

£, e — by 1 T
Lb = =1y &y —F:]dmy Eqn b=10
L, =l =Ly Mz A

where:
{Lg} the vector of total impulse towards the global (reference) axis system
[A] the matrix of inertia (symmetrical)
{og} the vector of velocity

This is an eigenvalue problem, where:

Eigenvalues  the 3 principal moments of inertia
l1, 15, 13
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Rigid body mode analysis _

Eigenvectors the directions of the 3 principal axes of inertia

{es} {e} {es}

Rigid body mode analysis

A rigid body is a (part of a) structure that does not deform of itself, but that moves periodically as a
whole at a certain frequency.

The modal parameters for such a rigid body mode are determined not by the dynamics of the structure
itself, but by the dynamic properties of the boundary conditions of that structure. This includes the way
it is attached to its surroundings (or the rest of the structure), the stiffness and damping characteristics
of suspending elements, its global mass, etc ... . A rigid body can be compared to a simple system with a
mass attached to a fixed point by a spring and a damper element.

It has 6 modes of vibration, i.e. translation along the X, Y, and Z axes, and rotation about these axes.
Every mode which is measured for such a system will be a linear combination of these 6 modes. Chapter
Derivation of rigid body properties from measured FRFs describes how it is possible to calculate the
inertia properties of a structure based on measured FRFs. This enables you to calculate the center of
gravity, moments of inertia and the principle axes as well as synthesized rigid body modes.

This chapter discusses how rigid body modes are used and describes two methods by which the modes
can be determined, namely:

» decomposition of measured modes into rigid body modes

* synthesis of rigid body modes based on geometrical data
Use of rigid body analysis

In modal analysis applications, the fact that (part of) a structure acts as a rigid body up to a certain
frequency can be used in different ways.

1. Debugging the measurement set-up

Rigid body modes can be used to verify the measurement set-up if the frequency range of
measured FRFs covers a rigid body of the entire structure in its suspension (elastic cords or air bags
for example). In this case, a simple peak picking procedure and an animation of the resulting mode
will indicate which measurement points are not moving "in line" with the rest of the structure.

Deviations from this rigid body motion can be caused by:

* non-measured nodes (not moving at all)

* wrong response point identification (moving out of line)

* wrong response direction (moving in opposite direction)

* bad transducers or wrong calibration values (wrong amplitude)
* other measurement errors
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