
Overshoot in data 
acquisition systems 
Effects of filters on sudden signal changes 
in time domain representation 

Summary 
A “discontinuity” in a signal, for example a step or transient, is a big 
challenge when it comes to accurate digital representation of such a 
signal in the time domain. Understanding physical phenomena, signal 
filtering and overshoot is important when interpreting amplitudes of a 
measured signal. 
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A digital representation of a signal starts with an 
understanding of the Fourier Transform and Fourier 
series. According to the Fourier series, every 
periodic function can be approached by the 
summation of a unique set of sinusoidal waves. 
Some examples are shown in Figure 1. 

Notice that some functions in Figure 1, e.g. the 
square wave and impulse, have infinite frequency 
content. Both functions have discontinuities, or a 
sudden step, contained in them.  

This sudden transient in an actual signal, and the 
associated infinite frequency content that comes 
with it, cannot be correctly replicated with data 
acquisition systems, with intrinsically finite 
frequency capabilities. To overcome problems 
related to that limitation (i.e. aliasing), filters are 
used in measurement systems. 

Filter may then produce overshoot depending on 
filter design.    

Background 

Figure 1: Various time 

functions (left) and their 

equivalent frequency content 

(right). 

“Sudden transients in actual 

signals and associated infinite 

frequency content cannot be 

correctly represented on data 

acquisition systems with finite 

frequency capabilities” 
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In digital data acquisition systems, representation of 
a continuous, non-periodic time signal by a digital, 
discrete time signal involves two important steps: 
sampling and alias protection. 

Sampling 
First, a time signal is represented by a series of 
digital samples. Expressed in terms of Fourier 
transformation, sampling can be modelled as a 
multiplication of our signal with a periodic series of 
Dirac impulses:  

Figure 2: Sampling an analog, continuous non-periodic time 

signal   

The Fourier transform of a continuous function is a 
complex function (i.e. including a real and imaginary 
part, or more practical in signal processing, 
magnitude and phase) in the frequency domain. The 
Fourier transform of a series of Dirac impulses is 
another series of Dirac impulses, this time in the 
frequency domain (Figure 3). 

 

 
  

Theory 

“Sampling can be modelled as a 

multiplication of our signal with a 

periodic series of Dirac impulses” 
 

Figure 3: Fourier transform 
of time functions 
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A multiplication in time domain corresponds to a 
convolution in frequency domain, and vice-versa. 
This convolution of our signal’s Fourier 
transformation with a Dirac train results in the 

following: 

Figure 4: Fourier transform of sampled signal.  

In frequency domain, this convolution results in a 
continuous, periodic function, of which only the first 
period in the frequency domain is of interest and 
represented by digital data acquisition systems. 
Discretization of a time domain signal makes the 
signal periodic in the frequency domain1. Because 
of reciprocity, discretization in the frequency domain 
results in turn in a periodic signal in the time 
domain. In other words, discretization in frequency 
domain imposes periodicity of the time domain 

 

1 Note: to force periodicity in time domain, a 

technique called “windowing” is typically used. This 

is not further elaborated in this White Paper. 

signal sampled during interval [0, T): Note that in 
order to represent the frequency domain with a 
digital device (for example, PC with software), the 
frequency domain is inherently also discretized.  

Next, the Nyquist-Shannon sampling theorem states 
that for a given sample rate 𝐹𝑆, perfect 
reconstruction of the signal is possible for a 
bandwidth 𝐵𝑊 < 𝐹𝑆 2⁄ .2 

Alias protection 
Digital data acquisition systems use anti-aliasing 
filters to ensure enough attenuation of the signal, at 
least, at the Nyquist frequency (being half of the 
sampling rate 𝐹𝑆 2⁄ ). This way, potential frequency 
alias folding back from 𝐹𝑆 (see Figure 4) will be 
properly attenuated, and thus not harm our original 
signal frequency content. 

Again, this can be represented by means of the 
Fourier transform. If we are interested in the 
frequency domain of a function, a conceptual anti-
aliasing filter model is a rectangle (or brick-wall) 
function in frequency domain: 

2 Inversely stated: a signal that contains information 

with a maximum frequency content of BW, can be 

accurately represented in frequency domain if 

sampled with a sample rate of 𝐹𝑆 > 2 ∙ 𝐵𝑊 

Figure 5: Frequency 
effect of a theoretical 
rectangle filter 

“If we are interested in the 

frequency domain, an ideal, 

conceptual anti-aliasing 

filter model is a rectangle 

function in frequency 

domain” 
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Multiplying functions in frequency domain 
corresponds to convolution in time domain.  

This means that correct representation of filtering in 
time domain, corresponds to convoluting the original 
time signal with the inverse Fourier transform of this 
filter model. This is how, by the way, actual LTI 
systems (linear, time-invariant and causal systems) 
process physical signals. And filters are LTI systems. 

The inverse Fourier transform of a rectangle function 
in frequency domain is a sinc function (sin 𝑥 𝑥⁄ ) in 
time domain. Figure 7 shows the effect of this 
convolution on a square wave function. As a result of 
this convolution, a ringing effect occurs at the 
transitions. 

Further, a square wave can be approached by a 
summation of an infinite amount of harmonic sine 
waves: 

Figure 6: Square is infinite number of oddly spaced harmonics. 

Using the square wave function period (T), the first 
harmonic in a sine wave is at frequency 1/T. An 
infinite number of harmonics are then added with 
frequencies of 3/T, 5/T, 7/T, etc. to infinity. 

The amplitude of each harmonic is reduced as 
frequency is increased. All the harmonics, up to 
infinity, are needed to reconstruct the square 
properly in the time domain. 

If some harmonics amplitude and/or phase are 
modified, then the time domain representation of the 
function is not exactly square. Digital data 
acquisition systems cannot represent a signal 
including all its harmonics up to infinity; an anti-
aliasing filter is needed to always meet Nyquist 
independently of the input signal, and so they will 
not be able to represent such a signal without some 
distortion. 

Figure 7: A multiplication of a function with a rectangle in 
frequency domain (fig 5.) corresponds, in time domain, to a 
convolution of that function with a sinc function  

The Gibbs effect  
Adding harmonic after harmonic to build up 
a square function will result, only at 
infinity, in a correct representation of the 
discontinuities. Inversely stated: 
practically, we cannot add an infinite 
number of harmonics, so our result will not 
converge to a correct representation of a 
discontinuity. This non-convergence 
results in ringing at the discontinuity. This 
observation is known as the Gibbs 
phenomenon, and should not be confused 
with the topic of this document. Overshoot 
is a product of a filter. 
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In the physical world, overshoot can be present in 
filter outputs as a ringing at the step/transition 
location in the signal as shown in Figure 8.  

In digital data acquisition systems, this ringing is 
not consistent at each step function in the signal. It 
can vary in amplitude or not occur at all. This also 
depends on timing of the transient relative to the 
data samples. 

Causes 
This ringing is a product of a sharp filter on a signal 
with transients, which frequency content falls in 
filter’s stopband.  

Anti-aliasing filters, pre-decimation filters, shaping 
filters, etc. are needed and often used in 
measurement devices, and introduce overshoot 
depending on their design: type/shape, sharpness, 

and phase response are important contributing 
parameters.  

For example, a sharp filter will release previously 
stored stopband energy more abruptly in the 
passband, giving overshoot around each transient in 
the signal. Note that stored energy must be released 
anyway, and most of the time it isn’t noticed 
because it’s shadowed by passband signal. 

While things seem fine in the frequency domain, in 
the time domain this effect is not desirable, 
especially from an amplitude accuracy point of view. 
The measured and observed amplitude after 
sampling and filtering can be very different from the 
actual signal itself. 

Overshoot 

Figure 8: Overshoot 
on a square signal 

“While things seem fine in the 

frequency domain, in the time 

domain this effect is not desirable, 

especially from an amplitude 

accuracy point of view” 
 

“Sharp filters release previously 

stored stopband energy more 

abruptly in the passband, causing 

overshoot around each transient 

or step in the signal” 
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Filter selection 
Filters are characterized by their passband, 
transition and stopband characteristics. Figure 8a 
gives an overview of typical filter parameters. 

Keeping in mind that overshoot is consequently only 
possible with filters of order 2 or higher (where 
energy can effectively be stored), some guidelines 
for selection of a suitable filter to minimize 
overshoot at the output are: 

Phase as linear as possible in bandwidth: That is, 
group delay as constant as possible. This ensures 
minimal shape distortion and helps distributing 
overshoot, if any, before and after transients. It’s 
necessary but not sufficient for an overshoot free 
signal.  

 

 

Analog and digital IIR filters have non-linear phase 
responses because they are intrinsically causal, i.e. 
they can’t foresee a transient before it actually 
happens at their inputs. A non-linear phase 
response (group delay not constant) means that the 
signal won’t propagate through the filter with the 
same delay for all its frequency components. 

In causal filters, the sharper their transition band, 
the more non-linear their phase, resulting in a more 
distorted signal time shape: overshoot energy can’t 
be spread, and is released only after the transient, 
therefore magnifying its effects. Note that most 
phase dispersion generally occurs in the vicinity of 
the cut-off frequency (𝑓𝑐𝑜). 

Smoothness (low sharpness) transition band 
filters. This implies smoother energy dosing for a 
given filter order, thus minimizing overshoot. The 
compromise is that the stopband is larger than a 
sharp filter, and high attenuation figures (i.e. alias 
attenuation in anti-aliasing filters) are reached 
farther above the 𝑓𝑐𝑜 of the filter (that should 
normally be set to our BW of interest). In order to 
have high alias attenuation using a smooth filter, we 
should use oversampling and higher sample rates, 
so that the Nyquist frequency is pushed safely above 
𝑓𝑐𝑜. At Nyquist, the smooth filter will then have 
enough attenuation to remove aliasing. 

 

 

  

“Analog and digital IIR filters have 

non-linear phase responses 

because they are intrinsically 

causal, i.e. they can’t foresee a 

transient before it actually 

happens at their inputs” 

Figure 8a: Filter 
parameters 

Other causes of a time domain 
signal distortion of a filter, not 
to be confused with 
overshoot, are resonance 
peaks (generalization of Q 
factor), and potential 
passband ripples, like in 
Chebyshev design. 
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Choosing a proper filter type: Figure 9 shows a 
comparison between 2 filter types. In general, 
increasing filter order reduces phase response 
linearity. But there are exceptions where phase 
linearity improves with filter order, e.g. maximally 
flat delay with Chebyshev stopband filter, Bessel 
filter, linear phase active filter, transitional filters 
(Gaussian), etc. 

Note that there is always a compromise between 
sharpness and overshoot: the sharper the filter, the 
more overshoot. This is not the case for the order of 
a filter, that gives its steepness or roll-off behavior. 
For example, a 2nd order Butterworth overshoots, and 
a 12th order Bessel does not. 

Time domain or frequency domain filters  
There is a fundamental difference in filter selection 
based on whether analysis is done in time or in 
frequency domain: 

- Time domain: use oversampling filters. 
Oversampling filters have a 𝑓𝑐𝑜 set to the BW 
of interest, way below Nyquist frequency, so 
we can reach sufficient alias suppression at 
Nyquist.  

- Frequency domain: a sharp filter with 𝑓𝑐𝑜 as 
close as possible to the Nyquist frequency 
can be used. Overshoot can be large but is 
not important: it is a time domain effect and 
does not influence amplitude at each 
spectral line in the frequency domain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

Filter Type Frequency domain Time domain 

Elliptic 

-Sharp: BW of interest can be 

close to 𝐹𝑆 2⁄ , and still be good 

in alias suppression 

-Large overshoot 

-Phase scattering 

(asymmetry) 

Bessel 

-Smooth: BW of interest needs 

to be a factor below 𝐹𝑆/2, for 

good alias suppression 

-Almost overshoot-free 

-Almost linear-phase 

(keeps symmetry) 

 👍 

👍 

👎 

👎 

Figure 9: The Elliptic filter example shows high 
energy release from stop and transition bands, 
while triggering maximum phase scattering after 
the discontinuity from transition band. On the 
contrary, Bessel filter has a wide transition band, 
implying smooth energy release. Furthermore, 
the near-linear phase response tends to 
distribute energy release before and after the 
discontinuity. 

“Sharpness is always a compromise; 

steepness/ roll-off is not” 
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Measuring overshoot 
The overshoot can be quantified in three ways. These 
quantities are illustrated in Figure 10:  

- Frequency – The frequency of the ringing overshoot 

- Amplitude – How much the signal under- and 
overshoots the original signal 

- Duration – Ringing decays with time 

In the following examples, a square signal is used to 
illustrate the overshoot. Note that sharp filters cause 
overshoot for signals with fast transients or steps. 

Examples of these types of signals include forces from 
driving over a pothole, the sound of an explosion, or the 
vibration from a golf club while hitting a ball.   

Frequency 
The frequency of the ringing is related to the frequency cut-
off of the filter. Normally, and considering a generic filter 
type, we encounter next phenomena in the vicinity of 𝑓𝑐𝑜 
(see Figure 10): 

- Maximum phase dispersion: maximum delay 
difference between frequency components. 
Frequencies near the 𝑓𝑐𝑜 get delayed and 
superimposed with less delayed lower frequency 
components. This contributes to an asymmetric, 
damped, 𝑓𝑐𝑜 ringing overshoot  

- The highest frequency component before the 𝑓𝑐𝑜 
gets still thru just before the transition band. So, for 
the same reason, it will be at same time the first 
frequency where the filter will overshoot: the 
stored stopband energy will encounter a first 
opportunity to be released exactly at this frequency 

 

  

“Sharp filters cause overshoot for 

signals with fast transients or 

steps” 
 

Theoretical background 

The inverse Fourier Transform of the frequency 
domain filter shape, is the impulse response of 
the filter (a filter can be considered itself a signal 
(or a function), as a property of LTI systems). The 
filter has a wide frequency domain characteristic, 
resulting in an impulse response function of short 
duration in the time domain (time and frequency 
domain are reciprocal). For a given filter design, 
overshoot energy is less when the duration of 
impulse response of the filter is shorter. In other 
words, the filter buffer is smaller and so is the 
energy for an overshoot. 

A 

𝑡𝑟 

𝑠𝑟  

𝑡𝑟 

A 𝑠𝑟  

duration 

amplitude 

T 

frequency = 1 𝑇⁄ ≈ 𝑓𝑐𝑜 

Figure 10: The ringing 
created by a sharp filter 
(digital IIR in this figure) 
can be quantified by 
frequency, amplitude and 
duration. 

Both rise slope 𝑠𝑟 and rise time 𝑡𝑟 are related to the 
maximum allowed frequency at passband 𝑓𝑐𝑜. In 
non-linear phase filters (like in the one in the 
Figure), the slope is not constant because group 
delay is not constant for all frequencies. Given that 
the maximum slope of 𝑠𝑖𝑛(𝑥) appears at 𝑥 = 0 
(halfway up): 

𝑠𝑟 ≈ 𝐷{Asin 𝜔𝑐𝑜𝑡}ȁ𝑡=0 = 𝐴𝜔𝑐𝑜cos 𝜔𝑐𝑜𝑡ȁ𝑡=0 = 𝐴2𝜋𝑓𝑐𝑜 ൤
𝑉

𝑠
൨ 

𝑡𝑟 =
𝐴

𝑠𝑟

≈
1

2𝜋𝑓𝑐𝑜

 [𝑠] 
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Duration and amplitude 
The duration of the overshoot is expressed by the damping 
time of the ringing and is determined by its frequency and 
initial (highest) amplitude. 

Both amplitude and damping time depend on the type of 
filter used, i.e. shape, sharpness and phase response.   

The graph in the lower half of Figure 11 shows that, with the 
same filter type, ringing lasts longer if more harmonics are 
filtered. In addition, the transient slope in the square is not 
as pronounced counting only on the lower harmonic 
frequencies. 

Applying filters to remove frequency content of a sine signal 
creates no overshoot, because a sine signal has only one 
frequency component: itself. In Figure 12, a sine signal of 
the same frequency of the square signal in Figure 11 is not 
affected by differing filter settings. There is no frequency 
content being stopped by a filter, so there is no overshoot:  

  

Figure 11: Top – The square signal has 
an infinite number of harmonics. 
Bottom – Using same filter type (IIR) in 
terms of sharpness and steepness, but 
with different cut-off frequencies. As 
more frequency harmonics are filtered, 
the overshoot has a longer duration. 

Attenuating 

Figure 12: a sine wave with frequency below 𝑓𝑐𝑜will 
not experience any distortion. Overshoot only 
occurs on signals with sudden changes, i.e. 
containing high frequency content in the filter 
stopband. 
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We have seen that filters can overshoot only if the 
signal falls into their stopband. So next to any filters 
used in a data acquisition system, the presence of 
overshoot also depends on the signal itself. 

As a rule of thumb, the sharper the filter, the larger 
the amplitude of the ringing. 

In Figure 13, the shape of two different filters is 
overlaid: a Bessel and a Butterworth filter. The 
Bessel filter is less sharp compared to the 
Butterworth filter, but it has almost linear phase at 
passband (its phase even improves with higher filter 
orders).  

In Figure 14, the amplitude of the overshoot of a 
Bessel filtered square signal is less than the 
amplitude overshoot of the same square signal using 
a Butterworth filter. In fact, the Butterworth filter is 
designed to have controlled (fixed) overshoot.  

Figure 13: Bessel (green) and 
Butterworth (blue), both 4th order, have 
same 3dB 𝑓𝑐𝑜 (where they cross), but 
given same filter order, the Bessel 
asymptotic roll off is achieved later than 
Butterworth, that is, Bessel is less sharp 
than Butterworth, i.e. is smoother in 
stopband energy dosing. 

Figure 14: Previous 
low pass filters 
(𝑓𝑐𝑜 = 2.33kHz) 
effect on overshoot 
in a 100Hz square 
signal, sampled at 
51.2kHz 
(oversampling factor 
12) 

11% typ. 

1% typ. 

maximum non-linearity 

around 𝒇𝒄𝒐 

in-band 

non-linear 

maximum non-linearity 

outside passband 

less sharp 

in-band 

more linear  

passband 

not flat 

Same 

steepness/roll-off 

(4th order) 

𝒇𝒄𝒐 
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Pre-ringing 
When viewing signals with overshoot, sometimes this 
ringing can be observed before the transient or step in the 
signal, other times the ringing might only be seen after the 
transient as shown in Figure 15. 

When using a symmetric impulse response FIR filter, its 
linear phase allows overshoot energy to spread before the 
transient. Overshoot amplitude will then be lower and pre-
ringing is created. Pre-ringing is per definition non-causal, so 
it’s not present in signals filtered by analog or digital IIR 
filters. In other words, exact linear phase is not possible with 
these filters. 

 

  

“Pre-ringing is - by definition - 

non-causal, so it’s not present in 

signals filtered by analog or 

digital IIR filters. In other words, 

exact linear phase is not possible 

with these filters” 
 

Figure 15: Square signal 
on left exhibits no pre-
ringing, square signal 
on right has pre-ringing. 
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Causes in time domain 
This document analyses signals in the frequency 
domain, which is normally more intuitive to 
understand. Filtering is easily understood by 
multiplying the Fourier transform of the input signal 
with the transfer function of the filter. 

In time domain, a multiplication is mathematically 
equivalent to convolution. We use this approach to 
understand the cause of overshoot in time domain. 
The convolution operation calculates for each x 
value, the area of the multiplication of 2 functions, 
one of them flipped in the x axis (a ‘flip & slide 
operation’,  see Figure 15a). 

In the physical world, those 2 functions are our 
signals (input signal and filter impulse response 
"signal"). The same idea holds for the digital version 
of the convolution, that would apply for a digital 
filter. In case of a FIR filter, each output sample in 
time is calculated by multiply-and-accumulation 
(MAC) operations, that are carried out for all filter 
impulse response samples, otherwise called 
coefficients. 

The Fourier transform of a 𝑠𝑖𝑛𝑐(𝑥) function is a 
rectangle function. LPFs have normally rectangle-
like shaped transfer functions, so they have sinc-like 
impulse responses. Remember that Fourier 
transform enables us to go from one domain to the 
other. The 𝑠𝑖𝑛𝑐(𝑥) function is defined as sin 𝑥 𝑥⁄ , so 
for example, the frequency of the overshoot will be 
defined by sin 𝑥, and its decay behavior will follow 

the multiplying term of sin 𝑥. In this case, for a 
perfect 𝑠𝑖𝑛𝑐(𝑥), the overshoot will decay with 1/𝑥. 

Thus seen from a time domain approach, if the input 
signal contains slope(s) allowing transient(s) shorter 
than the duration of the filter's impulse response 
lobes (i.e. has frequency content that will fall in the 
filter stopband), the cause of overshoot is the 
presence of negative lobes in the (sinc-like) impulse 
response of filters. In other words, those filters 
having negative lobes in their impulse response will 
overshoot at their output in these conditions.  

  

Figure 15a: For simplicity, we can take the 
analog example of a filter. The analog filter will 
process the signal like a continuous, 
mathematical convolution. For each output 
moment in time, the result is the area of the 
multiplication of both signals along all past and 
present times (in practical terms, it is enough to 
do it only along the filter impulse response, 
given that it is 0 elsewhere). 

“If the input signal contains 

transient(s), those filters having 

negative lobes in their impulse 

response will overshoot at their 

output” 
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SCADAS Lab and Mobile 
Overshoot can be greatly reduced in Simcenter 
Testlab by applying a low pass Bessel filter to the 
incoming signal. In the Channels worksheet, right-
click the channel header and select “Show 
columns…” (Figure 16) to activate the low pass filter 
settings. 

In the Channel Setup visibility menu, highlight the 
‘LPCutoff’, ‘LPFilterCharacteristics’, ‘LPFilterOn’, 
and ‘LPFilterOrder’ fields and press “Add” to make 
them visible as shown in Figure 17.    

Simcenter SCADAS and overshoot 

Figure 16: To add the low pass filter 
setting fields to channel setup, 
right-click the channel header and 
select “Show columns…”. 

Figure 17: “Show 
columns…” menu. 
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Four new columns are added to the channel information in 
the Channel Setup worksheet as shown in Figure 18. 

 
Figure 18: Lowpass (LP) filter selections in Channel Setup. 

The following parameters can be set: 

- LP filter type – Either Bessel or Butterworth can be 
selected. Bessel has almost linear phase 

- LP cut off –Bessel filters are less sharp. A good “rule 
of thumb” is to set the lowpass filter cutoff five 
times less than the bandwidth of the measurement, 
for a given filter order 

- LP filter on – Turns the filter ON or OFF 

- LP filter order – The lower the order, the more 
gradual the filter roll off 

A 2nd order Bessel overshoot will largely reduce overshoot 
of a measured square wave signal, as shown in Figure 19. 

Not every SCADAS data acquisition module has extra 
lowpass Bessel and Butterworth filters. Check the product 
information sheet or your local support if you have 
questions about filter characteristics of your SCADAS 
hardware. 

These low pass filter settings are available in the Simcenter 
SCADAS Lab and Mobile modules. The signal is oversampled 
at high frequency and filtered with steep filters in the 
decimation stages. This way, the frequency content of the 
signal is still completely valid near Nyquist frequency, which 
means that applying inline or post processing filters, 
overshoot of the time domain signal can be largely reduced.  

  

Figure 19: Square signal 
with overshoot (red) and 
square signal after Bessel 
filter applied (green) in 
Simcenter Testlab 
Signature. 

“ These low pass filter settings 

are available in the Simcenter 

SCADAS Lab and Mobile” 
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SCADAS RS 
A (digital) sharp anti-aliasing filter is typically used on top of 
any other filter chain when measuring a signal, especially 
after intermediate decimation stages. This sharp anti-
aliasing filter influences the behavior of the low-pass filters 
that may follow: the closer the low-pass 𝑓𝑐𝑜 the anti-aliasing 
filter, the more distortion the former will experience from 
the latter. 

A dedicated approach for time data acquisition and 
recording is implemented in Simcenter SCADAS RS. This 
hardware includes high performance dedicated extra 
shaping and anti-aliasing filters, including Bessel, 
Butterworth, Gaussian and Steep FIR types. 

As a result, using traditional filter techniques for frequency 
domain, measurements show a 1% overshoot with a Bessel 
filter using an oversampling factor of 12 (being the ratio 
between the Nyquist frequency and 𝑓𝑐𝑜 of the filter). 

With SCADAS RS, an oversampling of 4 is enough to provide 
1% overshoot using the same Bessel filter. Even more, 
overshoot free (0%) is guaranteed when using a Gaussian 
filter at 1/3 of the sampling rate (oversampling factor of 
1.5). 

In other words, outstanding overshoot values are achieved 
already for low oversampling factors.  

Figure 20: Overshoot 
comparison. SCADAS RS 
uses an improved filtering 
strategy for time domain 
analysis  
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Using the appropriate sampling rate and filters, 
overshoot on measured time signals can largely be 
reduced: 

- Careful selection of low-pass filter type 
can reduce and even eliminate overshoot  

- Overshoot is best observed when measuring 
transient signals that contain a step or fast 
transient. It occurs when an arbitrarily sharp 
filter, used in the conversion from analog to 
digital domain, stops higher frequency 
content of a signal in its stop band  

- Filter design including filter shape, 
sharpness, phase response and passband 
width are the contributing factors to the 
presence of overshoot at the output of the 
filter 

- Overshoot effects are visible in the time 
domain, not frequency domain 

Using a proper filter strategy with any analog to 
digital converter reduces or even eliminates 
overshoot. The effect of the filter should not be 
confused with the type of analog to digital converter. 

Sometimes there is confusion about a Successive 
Approximation Register (SAR) versus Sigma-Delta 
analog to digital converters and overshoot. Many 
Sigma-Delta converters have sharp decimation anti-
aliasing filters which prevent alias errors. But these 
sharp filters are not inherent to Sigma-Delta 
converters; any type of filter can be used.  

Data acquisition systems targeting frequency 
domain applications are optimized for a maximum 
frequency range coverage including amplitude 
accuracy in frequency domain up to high 
bandwidths. 

When studying phenomena in time domain, data 
acquisition systems need to be optimized for time 
domain filtering, avoiding inaccuracies in time 
domain amplitude because of filter effects. This is 
especially important in areas such as durability 
tests, road load data acquisition, image processing, 
medical EKG’s, etc. 

 

  

Conclusion 

“Studying phenomena in time 

domain is especially important in 

areas such as durability tests, 

road load data acquisition, image 

processing, medical ECG’s, etc..” 
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Josiah Willard Gibbs (1839-1903) was an American 
scientist from Yale University. In 1899, he published 
observations about the Fourier series approximation 
of a function with discontinuities, and how it 
presents undershoot and overshoot. That 
observation later became known as the “Gibbs 
Phenomenon” or “Gibbs Effect”. 

A Fourier series approximation of a periodic 
function: 

- is an approximation of the function by a 
summation of a (finite set) of sines with 
different phases 

- does not converge at discontinuities when 
present in the function  

The Gibbs Phenomenon is an observation of the 
Fourier series’ asymptotic behavior. It highlights its 
limitations when approximating periodic functions 
with discontinuities using a finite set of Fourier 
terms. 

In other words, even when representing a signal with 
a large (N) number of terms 𝑁 →  ∞ (approaching, 
but not reaching infinity) of the Fourier series a 
ringing overshoot at the original function’s 
discontinuities will always be present in the 
result. Only when 𝑁 = ∞, the sum converges to the 
original function: 

• Ringing amplitude is independent of N; it 
doesn’t fade when 𝑁 →  ∞ 

• Ringing amplitude is about 9% of the original 
amplitude discontinuity (“step”) 

• Ringing duration is inversely proportional to 
N, so to its energy 

Later it was discovered that this had already been 
described by an English mathematician, Henry 
Wilbraham, in 1848. Despite this revelation, the 
phenomenon continued to be named after Gibbs. 

Questions? Call us! 

 

 

   

Addendum: The Gibbs Effect 

”The Gibbs Phenomenon is an 

observation of the Fourier series’ 

asymptotic behavior and highlights its 

limitations when approximating 

periodic functions with discontinuities 

using a finite set of Fourier terms.” 

 

Gibbs was awarded the first 
American doctorate in 
Engineering. He specialized in 
mathematical physics, and 
his work affected diverse 
fields like chemical 
thermodynamics and physical 
optics. 
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Further references (digital signal processing) 

• Digital Signal Processing: Sampling Rates, Bandwidth, Spectral 

Lines, and more... 

• Gain, Range, Quantization 

• Aliasing 

• Overloads 

• Averaging Types: What's the difference? 

• Spectrum versus Autopower 

• Autopower Function...Demystified! 

• Power Spectral Density 

• Windows and Leakage 

• Window Types 

• Window correction factors 

• RMS Calculations 
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